Как мы видим - 7. Так как мы узнали все возможные пути до 10, узнаем теперь пути от 10 до 34. Чтобы они не проходили через число 28, нам нужно "перескочить" его, то есть какое-то число, меньшее 28, мы должны умножить на 2 и получить какое-то число, большее 28. Получаем такое неравенство: 10≤x<28 и 28<2x≤34
(10≤x<28 и 28<2x≤34) => (10≤x<28 и 14<x≤17) => (14<x≤17).
Program Task; Const N = 499; M = 1; Var A: Array [1..N, 1..N] of Boolean; i, j, x, y, t: Integer; b: Boolean; Begin Randomize; While i < M Do Begin x := Random(N) + 1; y := Random(N) + 1; If A[x, y] = False Then Begin A[x, y] := True; i := i + 1; End; End; While b = False Do Begin b := True; For i := 1 To N Do For j := 1 To N Do Begin If A[i, j] = True Then Begin If (i + 1) <= N Then A[i + 1, j] := True; If (i - 1) > 0 Then A[i - 1, j] := True; If(j + 1) <= N Then A[i, j + 1] := True; If (j -1) > 0 Then A[i, j - 1] := True; End; End; For i := 1 To N Do For j := 1 To N Do If A[i, j] = False Then b := False; t := t + 1; End; WriteLn(t); ReadLn; End.
Каким бы длинным решение не казалось - это не так, оно очень короткое, просто очень подробно расписано во всех деталях. Итак, что нам известно:
Команда 1: +1Команда 2: *2Начальное: 2Конечное: 34Проходит через: 10Не проходит через: 28Траектория вычислений должна содержать число 10. Узнаем сколько таких есть различных путей:
2 +1 +1 +1 +1 +1 +1 +1 +1 = 102 *2 +1 +1 +1 +1 +1 +1 = 10(2 +1) *2 +1 +1 +1 +1 = 10(2 +1 +1) *2 +1 +1 = 10(2 *2) *2 +1 +1 = 10(2 +1 +1 +1) *2 = 10(2 *2 +1) *2 = 10Как мы видим - 7. Так как мы узнали все возможные пути до 10, узнаем теперь пути от 10 до 34. Чтобы они не проходили через число 28, нам нужно "перескочить" его, то есть какое-то число, меньшее 28, мы должны умножить на 2 и получить какое-то число, большее 28. Получаем такое неравенство: 10≤x<28 и 28<2x≤34
(10≤x<28 и 28<2x≤34) => (10≤x<28 и 14<x≤17) => (14<x≤17).
Подыщем такие значения:
10 +1 +1 +1 +1 +1 = 1510 +1 +1 +1 +1 +1 +1 = 1610 +1 +1 +1 +1 +1 +1 +1 = 17Как мы видим - их 3. Дальше рассмотрим каждый:
15 *2 +1 +1 +1 +1 = 3416 *2 +1 +1 = 3417 * 2 = 34Выходит для каждого только 1 вариант ("15+1", "15+1+1", "16+1" будет иметь такой же путь, как и просто 16 и 17, поэтому их не рассматриваем).
Получается 7 путей от 2 до 10 и 3 пути от 10 до 34. Итого: 7*3 = 21.