М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
qvr3k
qvr3k
17.11.2020 08:52 •  Информатика

Дано 4-х значное число, найти что больше произведение сотен и десятков или произведение тысяч и единиц

👇
Ответ:
хорошист549
хорошист549
17.11.2020
Var n:integer; 
pro, sum:integer; 
begin 
write('Введите число: '); readln(n); 
pro:=1; sum:=0; 
while n>0 do 
begin 
pro:=pro*(n mod 10); 
sum:=sum+(n mod 10); 
n:=n div 10; 
end; 
writeln('Произведение = ', pro); 
writeln('Сумма = ', sum); 
end.
4,5(81 оценок)
Открыть все ответы
Ответ:
mumusinka
mumusinka
17.11.2020

номер 9 Начнем считать количество путей с конца маршрута — с города К. Пусть NX — количество различных путей из города А в город X, N — общее число путей.

 

В К можно приехать из Е, В, Г или Ж, поэтому N = NК = NЕ + NВ + N Г + NЖ (*).

 

Аналогично:

 

NЕ = NБ + NВ = 1 + 1 = 2;

NЖ = NД = 1;

NВ = NА = 1;

NГ = NВ + NА + NД = 1 + 1 + 1 = 3;

NД = NА = 1;

NБ = NА = 1.

 

Подставим найденные значения в формулу (*): N = 2 + 1 + 3 + 1 = 7.

Источник: ГИА по информатике 31.05.2013. Основная волна. Центр, Урал. Вариант 1301.

Объяснение:

4,8(71 оценок)
Ответ:
natalijamatijch
natalijamatijch
17.11.2020
Каждая из компонент связности должна быть кликой (иначе говоря, каждые две вершины в одной компоненте связности должны быть связаны ребром). Если в i-ой компоненте связности n_i вершин, то общее число рёбер будет суммой по всем компонентам связности:

\displaystyle \sum_{i=1}^K\frac{n_i(n_i-1)}2=\frac12\sum_{i=1}^K n_i^2-\frac12\sum_{i=1}^Kn_i=\frac12\sum_{i=1}^K n_i^2-\frac N2

Требуется найти максимум этого выражения (т.е. на самом деле - максимум суммы квадратов) при условии, что сумма всех ni равна N и ni - натуральные числа.

Если K = 1, то всё очевидно - ответ N(N - 1)/2. Пусть K > 1.

Предположим, n1 <= n2 <= ... <= nK - набор чисел, для которых достигается максимум, и n1 > 1. Уменьшим число вершин в первой компоненте связности до 1, а оставшиеся вершины "перекинем" в K-ую компоненту связности. Вычислим, как изменится сумма квадратов:
\Delta(\sum n_i^2)=(1^2+(n_K+n_1-1)^2)-(n_1^2+n_K^2)=2(n_1-1)(n_K-1)
Поскольку по предположению n1 > 1 (тогда и nK > 1), то сумма квадратов увеличится, что противоречит предположению о том, что на выбранном изначально наборе достигается максимум. Значит, максимум достигается, если наименьшая по размеру компонента связности - изолированная вершина. Выкинем эту компоненту связности, останутся K - 1 компонента связности и N - 1 вершина. Будем продолжать так делать, пока не останется одна вершина, тогда получится, что во всех компонентах связности кроме последней должно быть по одной вершине.

Итак, должно выполняться
n_1=n_2=\cdots=n_{K-1}=1;\qquad n_K=N-K+1

Подставив в исходную формулу, получаем
\displaystyle\frac{(N-K)(N-K+1)}{2}

Это и есть ответ.
4,7(55 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ