ответ: 432 см²
Объяснение:
Обозначим трапецию АВСD; BC||AD. BC=b=11 см, AD=a=25 см
Опустим из вершины В высоту ВН.
Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(25-11):2=7 см
DH=(25+11):2=18 см
ВС||AD, диагональ трапеции ВD- секущая. ⇒ ∠СВD=∠BDA (по свойству накрестлежащих углов)..
ВD - биссектриса угла В, поэтому и ∠АВD=∠BDA. Углы ∆ АВD при основании BD равны, ⇒ ∆ АВD равнобедренный, АВ=АD=25 см.
Из ∆ АВН по т.Пифагора ВН=24 ( стороны ∆ АВН из Пифагоровых троек).
Площадь трапеции равна произведению полусуммы оснований на высоту. Полусумма оснований DH=18 см
Ѕ(ABCD)=HD•BH=18•24=432 см²
Объяснение:
В ответе я использовал CTIME библиотеку, если возникают вопросы почему именно её, то по нескольким причинам:
Самое высокая скорость работы по сравнению с C++ библиотеками, а её функционал полнойстью покрывает нужды.В данном случаи используются достаточно прозрачные с точки зрения нейминга функции. Код будет хорошо читабилен.К слову об указателе в функции , не нужно беспокоиться об управлении памятью в данном случаи, за тебя это сделает функционал библиотеки.
за отметку лучший ответ.