var
v,s,h,a:extended;
begin
read(a,h);
v:=1/3*a^2*h;
s:=(a^2)+(sqrt((a^2/4)+h^2)*a/2*4);
write(s,v);
end.
Объяснение:
Схе́ма Го́рнера (или правило Горнера, метод Горнера, метод Руффини-Горнера) — алгоритм вычисления значения многочлена, записанного в виде суммы мономов (одночленов), при заданном значении переменной. Метод Горнера позволяет найти корни многочлена[1], а также вычислить производные полинома в заданной точке. Схема Горнера также является простым алгоритмом для деления многочлена на бином вида {\displaystyle x-c}x-c. Метод назван в честь Уильяма Джорджа Горнера, однако Паоло Руффини опередил Горнера на 15 лет, а китайцам этот был известен еще в XIII веке.
var
v,s,h,a:extended;
begin
read(a,h);
v:=1/3*a^2*h;
s:=(a^2)+(sqrt((a^2/4)+h^2)*a/2*4);
write(s,v);
end.