В город М напрямую можно попасть только из города Н (в который напрямую можно попасть только из города Ж), и из города Ж. Значит, для любого пути в Ж из А есть два варианта, как проехать в М.
В город Ж можно попасть напрямую из городов В, Г, и Д. В город В из города А можно попасть тремя путями: АБВ, АГВ и АБГВ, в город Г - двумя: АГ и АБГ, в город Е - тремя: АГЕ, АДЕ и АБГЕ.
Итого: Из города А в город Ж есть 3+2+3=8 путей, из Ж в М - 2 пути. Для каждого пути из А в Ж есть оба варианта пути из Ж в М, поэтому умножаем: 8×2=16 путей.
ответ: 16 путей
Буду очень благодарен, если Вы отметите мой ответ как лучший!
Объяснение:
1. Пронумеруем разряды:
3-й разряд - 4;
2-й разряд - 1;
1-й разряд - 5;
0-й разряд - 3.
4153₈=4·8³+1·8²+5·8¹+3·8⁰
2. 4153₈=4·8³+1·8²+5·8¹+3·8⁰=2048+16+40+3=2155₁₀
3. 125/8=15 (5)
15/8=1 (7)
(1)
125₁₀=175₈
4. Пронумеруем разряды:
2-й разряд - A;
1-й разряд - 6;
0-й разряд - E;
A6E₁₆=(10)(6)(14)=10·16²+6·16¹+14·16⁰
5. A6E₁₆=10·16²+6·16¹+14·16⁰=2560+96+14=2670₁₀
6. 350/16=21 (14=E)
21/16=1 (5)
(1)
350₁₀=15E₁₆
7. 247/2=123 (1)
123/2=61 (1)
61/2=30 (1)
30/2=15 (0)
15/2=7 (1)
7/2=3 (1)
3/2=1 (1)
(1)
247₁₀=11110111₂
247/8=30 (7)
30/8=3 (6)
(3)
247₁₀=367₈
247/16=7 (15=F)
(7)
247₁₀=7F₁₆
Получившиеся числа между собой равны, так как имеют одинаковое число в десятичной системе счисления.
5
Объяснение:
Числа для ответа подходят только те, которые являются степенью двойки: 2 4 8 16 32 64 128 и так далее, так как при их переводе в двоичную систему счисления единица будет только 1:
1, 10(2), 100(4), 1000(8), 10000(16) и так далее.
отсюда следует что нужно найти такое N, чтобы число 123 стало ближайшей степенью двойки. Ближайшая степень двойки к 123 - это 128, разница 5. Вот и ответ, 5