Между измерениями существуют интервалы, длительность которых определяется частотой дискретизации. Чем больше частота дискретизации, тем меньше интервал, тем точнее повторится форма исходного сигнала. То есть частота дискретизации определяет допустимый частотный диапазон входного сигнала. По теореме Котельникова она должна быть в два раза выше максимальной частоты измеряемого сигнала. Вот откуда взялась частота дискретизации 44 кГц. Это удвоенная частота слышимого человеком звука, теоретически.
Посмотрим еще раз на рисунок. Есть что-то неправильное. Ведь сигнал от одного замера до другого может измениться несколько раз, а это значит, что частота дискретизации выбрана гораздо ниже необходимой и в результате сигнал оцифруется с большими искажениями. Сигнал с необходимой частотой дискретизации будет выглядеть, как показано на следующем рисунке. Как видим, в этом случае разницей в замерах действительно можно пренебречь.
Объяснение:
Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми при для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти при становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов. Такими при похоже, пользовались торговцы и счетоводы того времени.
Постепенно из простейших при для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, арифмометр,компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при простых счётов даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, производительность и скорость счёта современных вычислительных устройств уже давно превосходят возможности самого выдающегося расчётчика-человека.