1, 2, 3, 4
Объяснение:
Введем обозначения:
a = X > 0, b = X > 4
Тогда выражение будет иметь вид (a + b) → b и нужно найти условия, когда оно ложно. Вместо этого, мы будем искать, когда отрицание этого условия истинно, т.е. истинность ¬( (a + b) → b)
Для начала избавимся от импликации
¬( ¬(a + b) + b)
А теперь примерим к внешнему отрицанию закон де-Моргана
(a + b) · ¬b
Раскрываем скобки
a · ¬b + b · ¬b
a · ¬b + 0
a · ¬b
Делаем обратную замену
( X > 0) · ¬(X > 4)
( X > 0) · (X ≤ 4)
Переведем это на более понятный язык:
X > 0 И X ≤ 4, или
0 < X ≤ 4
Из целых чисел сюда подойдут 1, 2, 3, 4.
n, p: integer;
begin
write('Число: ');
readln(n);
p := 1;
while n > 0 do
begin
p := p * (n mod 10);
n := n div 10
end;
writeln('Произведение цифр = ', p);
end.
Тест №1
Число: 54321
Произведение цифр = 120
Тест №2
Число: 54320
Произведение цифр = 0