ПОСЛЕДОВАТЕЛЬНОСТЬ ФИБОНАЧЧИ, математическая ПОСЛЕДОВАТЕЛЬНОСТЬ, каждый член которой является суммой двух предыдущих. Таким образом, если энный член последовательности обозначается хn, то для всей последовательности справедливым будет уравнение: хn+2=хn+хn+1, первыми двумя членами которого будут x1=l и x2=1. Порядок последовательности при этом таков: 1, 1, 2, 3, 5, 8, 13, 21..., следующим числом будет 34, т. к. сумма 13 и 21 равна 34 и т.д. Когда число n становится очень большим, отношение соответствующих членов устремляется к величине (Ц5+l)/2. Это соотношение называется золотым. В природе последовательность Фибоначчи можно проследить на примерах спирального развития сегментов раковины и лепестков подсолнуха, расходящихся лучами из одной точки в центре цветка. см. также ЗОЛОТОЕ СЕЧЕНИЕ.
Из условия Фано следует, что в префиксном неравномерном двоичном коде, предусматривающем однозначное декодирование, ни одно кодовое слово не может быть началом другого.
Таким образом, оставшиеся три кода не могут быть началом кода буквы Б, и началами кодов друг друга.
То есть коды 0 и 00 отпадают сразу, т.к. это начала буквы Б.
Если предположить, что один из кодов равен 1, и что нам нужны кратчайшие коды, значит оставшиеся коды могут быть только 01 и 011.
Если предположить, что коды двузначны, тогда кодами могут быть 01, 10 и 11.
В первом случае суммарная длина кодов равна 1+2+3+3 = 9, во втором случае - 2+2+2+3 = 9.
Оба варианта подходят, кратчайшая суммарная длина - 9
Begin
if b > a then a:=b;
if c > a then a:=c;
result:=a;
End;
Var
a,b,c:integer;
Begin
Write('Введите три числа: ');ReadLn(a,b,c);
Write('Max = ',Max(a,b,c))
End.