М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Айзат121а
Айзат121а
17.08.2022 14:19 •  Информатика

Цветной сканер имеет разрешение 640*640 точек нга дюйм. обьём памяти занимаемой просканированным изображением размером 2,5*4 дюйма, составляет 12000 кб

👇
Ответ:
svetlanaariann
svetlanaariann
17.08.2022

находим занимаемый объм в битах

640*640*2,5*4

делим на 1024 и находим его в килобитах

4000 Кб

12000/4000=3 (3 бита цветности)

не ясно что нужно, Кб-килобиты или килобайты

4,4(33 оценок)
Открыть все ответы
Ответ:
пимимпп
пимимпп
17.08.2022
Представим, что мы знаем ответ на вопрос "чему равна сумма всех выписанных чисел при выполнении вызова F(n)" для всех n < k. Попробуем понять, как найти ответ для n = k.

Что делает F(n)? Читаем текст программы: сначала выводит n, а потом (если n > 0) запускает F(n - 1) и F(n - 3). Обозначим S(n) - сумму всех чисел после вызова F(n), тогда (при n > 0) 
S(n) = n + S(n - 1) + S(n - 3)

Для неположительных n получаем, что S(n) = n (т.к. F(n) просто выводит n и завершает работу, не запуская никаких других F).

Остается только расписать, чему равно S(5)...
S(-2) = -2
S(-1) = -1
S(0) = 0
S(1) = 1 + S(0) + S(-2) = 1 + 0 - 2 = -1
S(2) = 2 + S(1) + S(-1) = 2 - 1 - 1 = 0
S(3) = 3 + S(2) + S(0) = 3 + 0 + 0 = 3
S(4) = 4 + S(3) + S(1) = 4 + 3 - 1 = 6
S(5) = 5 + S(4) + S(2) = 5 + 6 + 0 = 11

ответ. 11.



При исследовании рекурсивных алгоритмов бывает полезно понять, сколько вызовов функций делает программа (например, если рисовать дерево вызовов, это будет показывать количество "стрелочек" на этом дереве). Представим себе, что мы стали выполнять алгоритм на бумаге, попробуем понять, сколько чисел придется выписывать.
Если #(N) - число вызовов процедуры F при наивном вычислении F(N). Понятно, что #(N) = #(N - 1) + #(N - 3) (при N <= 0 #(N) = 1). Не задаваясь целью получить точную формулу для #(N), получим только оценку (на самом деле, весьма показательную).
Очевидно, что #(N - 1) >= #(N - 3), тогда #(N) >= 2 * #(N - 3).
Так как #(0) = 1, то #(3) >= 2 * #(0) = 2, #(6) >= 2 * #(3) >= 2^2, #(9) >= 2 * #(6) >= 2^3, и вообще #(3N) >= 2^N
Отсюда можно предположить, что #(N) растет не медленнее, чем 2^(N/3) >= 1.25^N. Если 1,25^N кажется медленно растущей функцией - это вовсе не так, для N = 100 (это немного, наверно?) получим число, большее миллиарда. Так что если не запоминать промежуточные результаты, результат будет считаться ооочень долго. S(N) также растет быстро, но это уже другая проблема.
4,4(37 оценок)
Ответ:
fbgudcc
fbgudcc
17.08.2022
Представим, что мы знаем ответ на вопрос "чему равна сумма всех выписанных чисел при выполнении вызова F(n)" для всех n < k. Попробуем понять, как найти ответ для n = k.

Что делает F(n)? Читаем текст программы: сначала выводит n, а потом (если n > 0) запускает F(n - 1) и F(n - 3). Обозначим S(n) - сумму всех чисел после вызова F(n), тогда (при n > 0) 
S(n) = n + S(n - 1) + S(n - 3)

Для неположительных n получаем, что S(n) = n (т.к. F(n) просто выводит n и завершает работу, не запуская никаких других F).

Остается только расписать, чему равно S(5)...
S(-2) = -2
S(-1) = -1
S(0) = 0
S(1) = 1 + S(0) + S(-2) = 1 + 0 - 2 = -1
S(2) = 2 + S(1) + S(-1) = 2 - 1 - 1 = 0
S(3) = 3 + S(2) + S(0) = 3 + 0 + 0 = 3
S(4) = 4 + S(3) + S(1) = 4 + 3 - 1 = 6
S(5) = 5 + S(4) + S(2) = 5 + 6 + 0 = 11

ответ. 11.



При исследовании рекурсивных алгоритмов бывает полезно понять, сколько вызовов функций делает программа (например, если рисовать дерево вызовов, это будет показывать количество "стрелочек" на этом дереве). Представим себе, что мы стали выполнять алгоритм на бумаге, попробуем понять, сколько чисел придется выписывать.
Если #(N) - число вызовов процедуры F при наивном вычислении F(N). Понятно, что #(N) = #(N - 1) + #(N - 3) (при N <= 0 #(N) = 1). Не задаваясь целью получить точную формулу для #(N), получим только оценку (на самом деле, весьма показательную).
Очевидно, что #(N - 1) >= #(N - 3), тогда #(N) >= 2 * #(N - 3).
Так как #(0) = 1, то #(3) >= 2 * #(0) = 2, #(6) >= 2 * #(3) >= 2^2, #(9) >= 2 * #(6) >= 2^3, и вообще #(3N) >= 2^N
Отсюда можно предположить, что #(N) растет не медленнее, чем 2^(N/3) >= 1.25^N. Если 1,25^N кажется медленно растущей функцией - это вовсе не так, для N = 100 (это немного, наверно?) получим число, большее миллиарда. Так что если не запоминать промежуточные результаты, результат будет считаться ооочень долго. S(N) также растет быстро, но это уже другая проблема.
4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ