Given an array consisting of integers. write program, which will get sum of elements a[i], where i
(l ⩽ i ⩽ r).
input
the first line contains three integers n, l, r, (1 ⩽ n ⩽ 105
, 1 ⩽ l ⩽ r ⩽ n) — array size and integrals. the
next line contains n integers ai (1 ⩽ ai ⩽ 109
) — elements of array.
output
sum of elements.
Требуется найти максимум этого выражения (т.е. на самом деле - максимум суммы квадратов) при условии, что сумма всех ni равна N и ni - натуральные числа.
Если K = 1, то всё очевидно - ответ N(N - 1)/2. Пусть K > 1.
Предположим, n1 <= n2 <= ... <= nK - набор чисел, для которых достигается максимум, и n1 > 1. Уменьшим число вершин в первой компоненте связности до 1, а оставшиеся вершины "перекинем" в K-ую компоненту связности. Вычислим, как изменится сумма квадратов:
Поскольку по предположению n1 > 1 (тогда и nK > 1), то сумма квадратов увеличится, что противоречит предположению о том, что на выбранном изначально наборе достигается максимум. Значит, максимум достигается, если наименьшая по размеру компонента связности - изолированная вершина. Выкинем эту компоненту связности, останутся K - 1 компонента связности и N - 1 вершина. Будем продолжать так делать, пока не останется одна вершина, тогда получится, что во всех компонентах связности кроме последней должно быть по одной вершине.
Итак, должно выполняться
Подставив в исходную формулу, получаем
Это и есть ответ.