Со времени появления жизни на Земле начался биологический круговорот. Он обеспечивает непрерывные превращения, в результате которых вещества после использования одними организмами переходят в усвояемую для других организмов форму. Энергетической основой является поступающая на Землю солнечная энергия. Растительные организмы поглощают минеральные вещества, которые через пищевые цепи попадают в организм животных, затем с редуцентов (бактерий, грибов и др.) возвращаются в почву или атмосферу. От интенсивности этого круговорота зависит количество и разнообразие живых организмов на Земле и объём накапливаемой ими биомассы. Макс. интенсивность биологического круговорота на суше наблюдается во влажных тропических лесах, где растительные остатки почти не накапливаются и высвобождающиеся минеральные вещества сразу же поглощаются растениями. Весьма низка интенсивность круговорота в болотах и тундре, где не успевающие разложиться остатки растений накапливаются. Особое значение имеют круговороты биогенных химических элементов, прежде всего углерода. Растительные организмы извлекают из атмосферы до 300 млрд. т углекислого газа (или 100 млрд. т углерода) ежегодно. Растения частично поедаются животными, частично отмирают. Органическое вещество в результате дыхания организмов, разложения их остатков, процессов брожения и гниения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, из которых в дальнейшем образуются угли, нефть, горючий газ. В активном круговороте углерода участвует очень небольшая его часть, значительное количество законсервировано в виде горючих ископаемых известняков и других горных пород. Осн. масса азота сосредоточена в атмосфере (3,8510¹⁵ т); в водах Мирового океана его содержится 2510¹³ т. В круговороте азота ведущая роль принадлежит микроорганизмам: азотофиксаторам, нитрификаторам и денитрификаторам. Ежегодно на суше в круговорот вовлекается ок. 4510⁹ т азота, в водной среде в 4 раза меньше. Азотосодержащие соединения из отмерших остатков преобразуются нитрифицирующими микроорганизмами в оксиды азота, которые впоследствии разлагаются денитрифицирующими бактериями с выделением молекулярного азота. С живым веществом связаны также круговороты кислорода, фосфора, серы и многих других элементов. Последствия воздействия человека на круговорот веществ становятся всё значительнее. Они стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции веществ, появляются новые химические соединения, которых не было прежде, меняется круговорот воды.
#1 Атом азота пиррола участвует в сопряжении, поэтому протонирование его фатально для молекулы. Оно приводит к интермедиату (I), который неароматичен и легко полимеризуется. Визуально при прибавлении соляной или бромоводородной кислоты к незамещенному пирролу быстро образуется чёрная полимерная «чача», которая трудно отмывается даже щелочью от стенок колбы.
#2 Фуран менее ароматичен, поэтому для него потеря ароматичености не так критична как для пиррола и кислотное раскрытие кольца для него протекает легче и более гладко.
Протонирование фурана в неводной среде в отсутствии сторонних нуклеофилов приведёт к катионам (2) и (3). Продукт (2) альфа-протонирования участвует, например, в стадиях обмена протия на дейтерий.
Бета-протонированный катион (3) в присутствии нуклеофилов (например воды), присоединяет их. Это может приводить к раскрытию цикла. Так что в водном разбавленном растворе HBr есть вероятность получить янтарный альдегид (5), помимо побочных продуктов полимеризации и поликонденсации.
Если вы добавите нуклеофильную среду, например, насыщенный бромоводородом метанол в присутствии небольшого количества воды, то процесс пройдёт глубже с образованием полного диацеталя янтарного альдегида (6). Нередко этим приемом часто пользуются в синтезах на основе фурана, получают производные, потом раскрывают или рециклизуют с кислотного катализа.
Удачи!