17,7 л Н2; 94,8 г MgSO4
Объяснение:
Дано: m (Mg) тех = 20 г
wприм. = 5%
Найти: V (H2) ; m (MgSO4)
Мg + H2SO4 = MgSO4 + H2↑
mприм. = wприм * m (Mg) техн. = 5 * 20 = 1 (г)
m (Mg) = m (Mg) техн. - mприм = 20 - 1 = 19 (г)
М (Mg) = 24 (г/моль)
n (Mg) = m (Mg) / M (Mg) = 19/24 ≈ 0,79 (моля)
n (Mg) = n (H2) = n (MgSO4) = 0,79 моля
M (MgSO4) = 24 + 32 + 4*16 = 120 (г/моль)
m (MgSO4) = n (MgSO4) * M (MgSO4) = 0,79*120 = 94,8 (г)
1 моль газа занимает при н. у. объем Vm = 22,4 л
V (H2) = n (H2) * Vm = 0,79 * 22,4 = 17,7 (л)
ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.
1. Основание и основный оксид = не взаимодействуют
2. Al(OH)3 + 3HCI = AICI3 + 3H2O
3. 2NaOH + CO2 = Na2CO3 + H2O
4. H2SO4 + CuO = CuSO4 + H2O
5. Медь ( Cu) находится после водорода в ряду напряжения , то есть не взаимодействует с кислотой
6. CaO + N2O5 = Ca(NO3)2
Объяснение:
Если есть вопросы, задавайте