В природе существуют две разновидности твердых тел, различающиеся по своим свойствам: кристаллические и аморфные.
Кристаллические тела остаются твердыми, т.е. сохраняют приданную им форму до определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другие протекает при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное. В результате длительной выдержки при температуре, а в некоторых случаях при деформации, нестабильность аморфного состояния проявляется в частичной или полной кристаллизации. Пример: помутнение неорганических стекол при нагреве.
Кристаллические тела характеризуются упорядоченной структурой. В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
^ Тонкая структура описывает расположение элементарных частиц в кристалле и электронов в атоме. Изучается дифракционными методами рентгенографии и электронографии. Большинство кристаллических материалов состоит из мелких кристалликов - зерен. Наблюдают такуюмикроструктуру с оптических или электронных микроскопов. Макроструктуру изучают невооруженным глазом или при небольших увеличениях, при этом выявляют раковины, поры, форму и размеры крупных кристаллов.
Закономерности расположения элементарных частиц в кристалле задаются кристаллической решеткой. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка - равные расстояния до ближайших элементарных частиц по осям координат a, b, c и три угла между этими отрезками . Соотношения между этими величинами определяют форму ячейки. По форме ячеек все кристаллы подразделяются на семь систем, типы кристаллических решеток которых представлены на рис.1.
m(р-раCaCI₂)=10г
m(осадка)=0,28г.
m(CaCI₂)-?
1. Запишем уравнение реакции:
CaCI₂ + 2NaHCO₃ =CaCO₃↓ + Na₂CO₃ + 2HCI
2. Определим молярную массу карбоната кальция и молярную массу хлорида кальция :
M(CaCO₃)=40+12+16x3=100г./моль m(CaCO₃)=100г.
M(CaCI₂)= 40+35,5х2= 111г./моль m(CaCI₂) = 111г.
3. По уравнению реакции из:
111г. CaCI₂ образуется 100г. CaCO₃
Xг. CaCI₂ образуется 0,28г.CaCO₃
X= 111г. х 0,28г.÷ 100г.=0,31г. CaCI₂ m(CaCI₂)=0.31г.
4. Определим массовую долю хлорида кальция в его растворе 10г.:
ω%(CaCI₂)= m(CaCI₂)÷m(р-раCaCI₂)×100%=0,31г÷10г.×100%=3,1%
5. Массовая доля хлорида кальция в растворе массой 10г. составляет 3,1%.