В результате взаимодействия иодоводорода с серной кислотой (HI + H2SO4 = ?) происходит образование свободного йода, воды и выделение газа – сероводорода. Молекулярное уравнение реакции имеет вид:
[8HI + H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O.\]
Запишем ионные уравнения, учитывая, что вещества, газы и вода на ионы не распадаются, т.е. не диссоциируют.
[ 8H^{+} + 8I^{-} + 2H^{+} + SO_4^{2-} \rightarrow 4I_2 + H_2S + 4H_2O;\]
[ 10H^{+} + 8I^{-} + SO_4^{2-} \rightarrow 4I_2 + H_2S + 4H_2O.\]
Первое уравнение называют полным ионным, а второе – сокращенным ионным.
Сероводород в обычных условиях представляет собой бесцветный газ с характерным запахом гниющего белка. Он немного тяжелее воздуха и горит голубоватым пламенем, образуя диоксид серы и воду:
[2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2.\]
Сероводород легко воспламеняется; смесь его с воздухом взрывает. Очень ядовит. При 20^{0}C один объем воды растворяет 2,5 объема сероводорода. Раствор сероводорода в воде называется сероводородной водой.
Сероводород – сильный восстановитель. При действии сильных окислителей он окисляется до диоксида серы или до серной кислоты; глубина окисления зависит от условий: температуры, рН раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты:
[H_2S + 4Cl_2 + 4H_2O \rightarrow H_2SO_4 + 8HCl.\]
Средние соли сероводорода называют сульфидами.
При высокой температуре сера взаимодействует с водородом, образуя газ сероводород.
Практически сероводород обычно получают действием разбавленных кислот на сернистые металлы, например на сульфид железа:
[FeS + 2HCl \rightarrow FeCl_2 + H_2S.\]
Объяснение:
Химические свойства амфотерных оксидов
1. Амфотерные оксиды при взаимодействии с кислотой или кислотным оксидом проявляют свойства, характерные для основных оксидов. Так же, как основные оксиды, они взаимодействуют с кислотами, образуя соль и воду.
Например, при взаимодействии оксида цинка с соляной кислотой образуется хлорид цинка и вода:
ZnO+2HCl→ZnCl2+H2O.
2. Амфотерные оксиды при взаимодействии со щёлочью или с оксидом щелочного или щелочноземельного металла проявляют кислотные свойства. При сплавлении их со щелочами протекает химическая реакция, в результате которой образуются соль и вода.
Например, при сплавлении оксида цинка с гидроксидом калия образуется цинкат калия и вода:
ZnO+2KOH→K2ZnO2+H2O.
Если же с гидроксидом калия сплавить оксид алюминия, кроме воды образуется алюминат калия: Al2O3+2KOH→2KAlO2+H2O
Объяснение: При бромировании пропана получаем 2-бромпропан (радикальное замещение идет по второму атому углерода, потому что вторичный радикал более устойчив). Обработка галогеналканов щелочью в спиртовом растворе дает реакцию элиминирования (отщепления групп без присоединения новых), а точнее дегидробромирования получем пропен. Рискну предположить, что
- это бензол. В присутствии хлорида алюминия происходит присоединения пропена к бензольному кольцу с образованием проилбензола. Далее, окислея любые алкил-производные бензола в кислой среде, получаем бензойную кислоту. Ну а реакция любой кислоты со спиртом - есть реакция этерефикации, то есть образования сложных эфиров. Последний продукт - это этилфензоат.
Примечание: здесь Ph обозначет группу
, четвертая реакция указана без коэффициентов.