элементарные частицы, атом, молекула — всё это объекты микромира, не наблюдаемого нами. в нём действуют иные законы, чем в макромире, объекты которого мы можем наблюдать или непосредственно, или с приборов (микроскоп, телескоп и т. поэтому, обсуждая далее строение электронных оболочек атомов, будем понимать, что мы создаём своё представление (модель), которое в значительной степени соответствует современным , хотя и не является абсолютно таким же, как у учёного-. наша модель .
электроны, двигаясь вокруг ядра атома, образуют в совокупности его электронную оболочку. число электронов в оболочке атома равно, как вы уже знаете, числу протонов в ядре атома, ему соответствует порядковый, или атомный, номер элемента в таблице д. и. менделеева. так, электронная оболочка атома водорода состоит из одного электрона, хлора — из семнадцати, золота — из семидесяти девяти.
как же движутся электроны? хаотически, подобно мошкам вокруг горящей лампочки? или же в каком-то определённом порядке? оказывается, именно в определённом порядке.
электроны в атоме различаются своей энергией. как показывают опыты, одни из них притягиваются к ядру сильнее, другие — слабее. главная причина этого заключается в разном удалении электронов от ядра атома. чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки, а вот чем дальше они от ядер, тем легче их оторвать. очевидно, что по мере удаления от ядра атома запас энергии электрона (е) увеличивается (рис. 38).
электроны, движущиеся вблизи ядра, как бы загораживают
максимальное (наибольшее) число электронов, находящихся на энергетическом уровне, можно определить по формуле: 2n2, где n — номер уровня. следовательно, первый энергетический уровень заполнен при наличии на нём двух электронов (2 × 12 = 2); второй — при наличии восьми электронов (2 × 22= 8); третий — восемнадцати (2 × з2 = 18) и т. д. в курсе 8—9 классов мы будем рассматривать элементы только первых трёх периодов, поэтому с завершённым третьим энергетическим уровнем у атомов мы не встретимся.
число электронов на внешнем энергетическом уровне электронной оболочки атома для элементов главных подгрупп равно номеру группы.
теперь мы можем составить схемы строения электронных оболочек атомов, руководствуясь планом:
а) определим общее число электронов на оболочке по порядковому номеру элемента; б) определим число заполняемых электронами энергетических уровней в электронной оболочке по номеру периода; в) определим число электронов на каждом энергетическом уровне (на 1-м — не больше двух; на 2-м — не больше восьми, на внешнем уровне число электронов равно свою в подготовке нового урока — сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.
1. изобразите схемы строения электронной оболочки атомов: а)
Применяются следующие соли:
Stroncium bromatum — при эпилепсии до 4 г в день. Stronoium iodatum—по 0,5—1 г вместо йодистого калия. Stroncium.lacticum —предлагается при альбуминурии и нефрите по 0,5 г на прием, а также как притовоглистное (И.Левинштейн). В настоящее время стронций применяется в клинической практике для ортопедического исправления деформации у детей (А. О. Войнар).
Источниками стронция в природных водах являются горные породы, наибольшие количества его содержат гипсоносные отложения.
Низкая концентрация стронция в природных водах объясняется слабой растворимостью их сернокислых соединений (растворимость SrSO4 при 18°С 114 мг/дм3).
В пресных водах концентрация стронция обычно намного ниже 1 мг/дм3 и выражается в микрограммах на литр. Встречаются районы с повышенной концентрацией этого иона в водах.
Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает "уровскую болезнь" у человека и животных (по названию реки Уров в Восточном Забайкалье) — поражение и деформацию суставов, задержку роста и др.
Применение Бария.
Газопоглотитель в электронных приборах. Добавляется совместно и цирконием в жидкометаллические теплоносители ( сплавы натрия, калия, рубидия).
Фторид бария применяется в виде монокристаллов в оптике ( линзы, призмы)
Пероксид бария используется в пиротехнике.
Фторид бария используется в твердотельных фторионных аккумуляторных батареях в качестве компонента фторидного электролита.
Оксид бария используется в мощных медноокисных аккумуляторах в качестве компонента активной массы (окись бария-окись меди).
Сульфат бария применяется в качестве расширителя активной массы отрицательного электрода при производстве свинцово-кислотных аккумуляторов.