СuSO4 + 2NaOH = Cu(OH)2 + Na2SO4
Cu(+2) + SO4(-2) + 2Na(+) + 2OH(-) = Cu(OH)2 + 2Na(+) + SO4(-2)
Cu(+2) + 2OH(-) = Cu(OH)2
3KCl + Na3PO4 = 3NaCl + K3PO4
3K(+) + 3Cl(-) + 3Na(+) + PO4(-3) = 3Na(+) + PO4(-3) + 3Cl(-) + 3K(+)
(реакция не идёт)
Al2(SO4)3 + 3BaCl2 = 3BaSO4 + 2AlCl3
2Al(+3) + 3SO4(-2) + 3Ba(+2) + 6Cl(-) = 3BaSO4 + 2Al(+3) + 6Cl(-)
3Ba(+2) + 3SO4(-2) = 3BaSO4
Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O
2Na(+) + SO3(-2) + 2H(+) + SO4(-2) = 2Na(+) + SO4(-2) + SO2 + H2O
SO3(-2) + 2H(+) = SO2 + H2O
Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O
2Na(+) + CO3(-2) + 2H(+) + SO4(-2) = 2Na(+) + SO4(-2) + CO2 + H2O
CO3(-2) + 2H(+) = CO2 + H2O
CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4
Cu(+2) + SO4(-2) + 2Na(+) + 2OH(-) = Cu(OH)2 + 2Na(+) + SO4(-2)
Cu(+2) + 2OH(-) = Cu(OH)2
Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Оксид углерода(II) образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение оксида углерода(II) за счёт обычных в почвах фенольных соединений, содержащих группы OCH3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.
Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв оксид углерода(II) выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.
В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).
Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % оксида углерода(II). В коммунальной сфере не применяется в виду наличия значительно более дешёвого и энергоэффективного аналога — природного газа.
Поступление CO от природных и антропогенных источников примерно одинаково.
Оксид углерода(II) в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года. Основной канал потери CO — окисление гидроксилом до диоксида углерода.
Закрыть этот раздел