Господи. Да запомните простые несколько правил: 1. Сумма всех степеней окисления внутри молекулы всегда равна 0.
2. Простые вещества всегда имеют степень окисления равную 0. Например: Br2^(0) , Na^(0), Al(0), He^(0) и т. д.
3. Ионы щелочных металлов (Li, Na, K, Rb, Cs, Fr) всегда имеют степень окисления равную (+1)
4. Ионы щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) всегда имеют степень окисления равную (+2)
5. Ион алюминия всегда имеет степень окисления равную (+3)
6. Ионы водорода всегда имеют степень окисления равную (+1), за исключением случаев гидридов. Пример NaH, CaH2, AlH3 и т. д. В этих соединениях ион водорода имеет степень окисления равную (-1)
7. Ионы кислорода всегда имеют степень окисления равную (-2), за исключением случаев пероксидов типа Na2O2, H2O2 и т. д. В этих соединениях степень окисления иона кислорода равна (-1). Естественно есть одно исключение - это соединение кислорода с фтором OF2, тут кислород имеет степень окисления равную (+2)
8. Это не правило, а просто подсказка. Если ион галогена находится на правом конце формулы молекулы, то этот ион галогена имеет степень окисления равную (-1). Пример SbCl4^(-1), BaBr2^(-1) и т. д.
9. Суммарная степень окисления аниона кислотного остатка всегда равна количеству атомов водорода в исходной кислоте со знаком (-) минус. Например: (SO4)^(-2), т. к. в исходной серной кислоте два атом водорода H2SO4, или (РО4)^(-3), т. к. в исходной фосфорной кислоте три атома водорода Н3РО4, или (ClO4)^(-1), т. к. в исходной хлорной кислоте HClO4 всего один атом водорода
Ну и примеры: №1. KMnO4, по правилу №3 калий, как щелочной металл, имеет степень окисления =+1. По правилу №7, кислод имеет степень окисления =(-2). Теперь нам осталось определить степень окисления иона марганца Mn. Для этого обозначим степень окисления марганца через Х и составим уровнения по правилу №1. +1+Х+4*(-2)=0, откуда получим Х-7=0 и Х=+7, следовательно заряд иона марганца равен +7, т. е. Mn^(+7).
№2. Na2Cr2O7. По правилу №3 натрий, как щелочной металл имеет степень окисления равную +1. По правилу №7 кислород имеет степень окисления (-2). Обозначим через Х степень окисления иона хрома и составим уравнение по правилу №1: 2*(+1)+2*Х+7*(-2)=0, открываем скобки и производим действия 2*Х-12=0, откуда Х=12/2=+6. Следовательно степень окисления иона хрома равна +6.
№3 СuSO4. По правилу №9 суммарная степень окисления сульфат-иона, который является кислотным остатком серной кислоты, равна (-2), т. к. исходная серная кислота имеет в своем составе 2 атома водорода. По правилу №7 степень окисления кислорода равна (-2). Следовательно на основании этих двух правил мы можем составить первое уравнение, где Х это степень окисления иона серы в кислотном остатке. Х+4*(-2)=(-2), откуда Х=+6, следовательно ион серы имеет степень окисления=+6. Теперь обозначим У - степень окисления иона меди и составим уравнение на основании правила №1: У+(+6)+4*(-2)=0, откуда У-2=0 и У=+2, следовательно степень окисления иона меди=+2.
При хранении мяса сублимационной сушки изменение состояния жиров может быть связано с реакциями их окисления и гидролитического распада триглицеридов под влиянием тканевых липаз.
Развитие окислительных процессов в жирах, зависящее от природы жира и условий хранения, может привести к ухудшению органолептических показателей продукта и снижению его питательной ценности из-за изменения жиров мяса при хранении. Возникновение карбонильных соединений при окислении жира также развитию реакций образования карбониламинов, изменяющих окраску высушенного мяса и ухудшающих его качества в целом.
Окислительные процессы интенсифицируются при повышении температуры, воздействия света, наличии катализаторов, которыми являются и пигменты мяса.
Гемоглобин оказывает достаточно высокое воздействие на развитие окислительных реакций в дегидратированных системах.
Исследование окислительных изменений жиров при хранении мяса (говяжьего) сублимационной сушки показывает, что они происходят сравнительно медленно. При этом наблюдается снижение йодного числа жира, увеличение содержания перекисей и карбонильных соединен.
По данным Л.П. Хахиной, хранение говяжьего мяса сублимационной сушки coпровождается повышением перекисных чисел жировой фракции мяса. Наиболее быстрое увеличение содержания перекиси наблюдается при неограниченном контакте мяса с кислородом воздуха при повышенных температурах.
Окислительные изменения жировой фракции свиного мяса и мяса птицы развиваются более интенсивно, чем говяжьего мяса. При хранении обезвоженного сублимацией куриного мяса в комбинированных пленочных материалах А.С. Большаков, П.И. Пугачев и другие установили увеличение перекисного числа жара и общего содержания карбонильных соединений. С увеличением фракции насыщенных карбонильных соединений изменяются органолептические показатели жира. Авторами было отмечено более интенсивное развитие окислительных изменений жира в темном мясе типы, что по всей вероятности, связано с каталитическим влиянием гемовых пигментов, которых в темном мясе птицы содержится больше, чем в белом.
При хранении мяса сублимационной сушки окисляться могут не только жиры, но и другие липиды и, в частности, фосфатиды, в результате чего органолептические показатели мяса ухудшаются.
Значительное изменение органолептических показателей высушенной рыбы при ее хранении связано с окислением липоидной фракции. Неприятный запах, появляющийся у высушенной рыбы в процессе ее хранения в присутствии воздуха, связан с образованием летучих продуктов окисления жиров.
Опыты по применению полифенольных антиокислителей, для подавления окислительных (процессов в мясе сублимационной сушки свидетельствуют о том, что введенные антиокислители в определенных концентрациях тормозит развитие окислительных процессов. В то же время эффективность действия антиокислителей вследствие их неравномерного распределения и недостаточности контакта антиокислителя с липидами, сравнительно невелика. В работе С. Бишоф при изучении окисления жира в дегидрированных системах было выявлено более высокое защитное действие фосфолипидов по сравнению с фенольным и антиоксидантами.
Хранение мяса и рыбы сублимационной сушки, не подвергающихся предварительной тепловой обработке, сопровождается повышением содержания свободных жирных кислот. Повышение кислотного числа жира при хранении высушенного мяса в условиях вакуума или в атмосфере инертного газа свидетельствует о гидролитическом распаде жиров; повышение температуры ускоряет гидролиз жира. Так, по данным Л.П. Хахиной, при хранении высушенного сублимацией фарша в течение двух лет под вакуумом при температуре, не превышающей 26°С, кислотное число повысилась с 18,1 до 29,7, а при температуре 28...30°С кислотное число возросло с 18,1 до 81. В случае длительного хранения высушенного мяса при повышенных температурах с доступом воздуха кислотное число повышается значительно быстрее, что, по всей вероятности, связано с накоплением низкомолекулярных жирных кислот за счёт окислительного распада жира ВОТ ЧТОТО
1. Сумма всех степеней окисления внутри молекулы всегда равна 0.
2. Простые вещества всегда имеют степень окисления равную 0. Например: Br2^(0) , Na^(0), Al(0), He^(0) и т. д.
3. Ионы щелочных металлов (Li, Na, K, Rb, Cs, Fr) всегда имеют степень окисления равную (+1)
4. Ионы щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) всегда имеют степень окисления равную (+2)
5. Ион алюминия всегда имеет степень окисления равную (+3)
6. Ионы водорода всегда имеют степень окисления равную (+1), за исключением случаев гидридов. Пример NaH, CaH2, AlH3 и т. д. В этих соединениях ион водорода имеет степень окисления равную (-1)
7. Ионы кислорода всегда имеют степень окисления равную (-2), за исключением случаев пероксидов типа Na2O2, H2O2 и т. д. В этих соединениях степень окисления иона кислорода равна (-1). Естественно есть одно исключение - это соединение кислорода с фтором OF2, тут кислород имеет степень окисления равную (+2)
8. Это не правило, а просто подсказка. Если ион галогена находится на правом конце формулы молекулы, то этот ион галогена имеет степень окисления равную (-1). Пример SbCl4^(-1), BaBr2^(-1) и т. д.
9. Суммарная степень окисления аниона кислотного остатка всегда равна количеству атомов водорода в исходной кислоте со знаком (-) минус. Например: (SO4)^(-2), т. к. в исходной серной кислоте два атом водорода H2SO4, или (РО4)^(-3), т. к. в исходной фосфорной кислоте три атома водорода Н3РО4, или (ClO4)^(-1), т. к. в исходной хлорной кислоте HClO4 всего один атом водорода
Ну и примеры: №1. KMnO4, по правилу №3 калий, как щелочной металл, имеет степень окисления =+1. По правилу №7, кислод имеет степень окисления =(-2). Теперь нам осталось определить степень окисления иона марганца Mn. Для этого обозначим степень окисления марганца через Х и составим уровнения по правилу №1. +1+Х+4*(-2)=0, откуда получим Х-7=0 и Х=+7, следовательно заряд иона марганца равен +7, т. е. Mn^(+7).
№2. Na2Cr2O7. По правилу №3 натрий, как щелочной металл имеет степень окисления равную +1. По правилу №7 кислород имеет степень окисления (-2). Обозначим через Х степень окисления иона хрома и составим уравнение по правилу №1: 2*(+1)+2*Х+7*(-2)=0, открываем скобки и производим действия 2*Х-12=0, откуда Х=12/2=+6. Следовательно степень окисления иона хрома равна +6.
№3 СuSO4. По правилу №9 суммарная степень окисления сульфат-иона, который является кислотным остатком серной кислоты, равна (-2), т. к. исходная серная кислота имеет в своем составе 2 атома водорода. По правилу №7 степень окисления кислорода равна (-2). Следовательно на основании этих двух правил мы можем составить первое уравнение, где Х это степень окисления иона серы в кислотном остатке. Х+4*(-2)=(-2), откуда Х=+6, следовательно ион серы имеет степень окисления=+6. Теперь обозначим У - степень окисления иона меди и составим уравнение на основании правила №1: У+(+6)+4*(-2)=0, откуда У-2=0 и У=+2, следовательно степень окисления иона меди=+2.