Циклопарафины, их строение, свойства, нахождение в природе, практическое значение
Помимо предельных углеводородов с открытой цепью существуют предельные углеводороды с замкнутой (циклической) цепью. Они имеют несколько названий: циклоалканы, циклопарафины, нафтены, цикланы, полиметилены. Циклоалканы различаются между собой размерами цикла:

По размеру цикла циклоалканы делятся на группы: малые (C3, C4) и обычные (C5 – C7) циклы.
Молекулы циклоалканов содержат на два атома Н меньше, чем соответствующие алканы (за счет их отщепления замыкается углеродное кольцо). Поэтому общая формула циклоалканов СnH2n.
Трех- и четырехчленные циклоалканы менее прочны, чем пяти- и шестичленные. Циклобутан и особенно циклопропан – соединения малоустойчивые. Это связано с тем, что в молекулах этих соединений углы между валентными связями значительно отличаются от “нормального” угла в правильном тетраэдре (109°28'). Например, в циклопропане, молекулу которого можно изобразить в виде равностороннего треугольника, угол между углерод-углеродными связями (60°) отличается от тетраэдрического угла на 49°28' (а в расчете на одну связь на 24°44'). Такое отклонение от тетраэдрического угла создает в молекуле значительное напряжение, что существенно сказывается на ее устойчивости.
В циклогексане разница между тетраэдрическим углом и углом между углерод-углеродными связями в нем меньше и составляет 10°32' (в расчете на одну связь она равна 5°16'). Чтобы еще уменьшить эту разницу, молекула циклогексана, как и другие молекулы циклоалканов, изгибается в пространстве. Существуют две основные формы – “ванна” и “кресло”. Наиболее устойчивой (энергетически выгодной) формой в циклогексане является форма “кресло”.
Молекулы циклоалканов часто содержат боковые углеводородные цепи:

У циклопарафинов возможна изомерия.
Структурная изомерия обусловлена размером цикла (например, циклобутан и метилциклопропан – изомеры) и положением заместителей в цикле (например, 1,1- и 1,2-диметилциклобутан).
Также имеет место пространственная изомерия, связанная с различным расположением заместителей относительно плоскости цикла. При их расположении по одну сторону от плоскости цикла получается цисизомер, по разные стороны – трансизомер:

Кроме того, каждому циклоалкану изомерен соответствующий алкен – это пример межклассовой изомерии.
Физические свойства. Циклопропан и циклобутан при нормальных условиях – газы, с С5 до С16 – жидкости, начиная с С17 и выше – твердые вещества. Температура кипения и плавления циклоалканов несколько выше, чем у алканов с тем же числом атомов С в молекуле. Циклопарафины в воде практически не растворяются.
Химические свойства. Циклоалканы химически малоактивны и в этом отношении напоминают алканы: они горючи, атомы Н могут замещаться галогенами.
Химические свойства циклоалканов определяются особенностями их строения.
1. Малые циклы (особенно циклопропан) неустойчивы и к разрыву, поэтому они склонны к реакциям присоединения:

2. Обычные циклы (С5–С7) очень устойчивы и вступают только в реакции замещения, подобно алканам:

ph = – lg [h+]
не все наши читатели уже знакомы с логарифмами, поэтому коротко объясним, что это такое. десятичный логарифм числа а, т.е. логарифм по основанию 10 (обозначение log10а или lgа), показывает, в какую степень надо возвести число 10 (основание логарифма), чтобы получить число а.
например,
lg100 = 2 (поскольку 102 = 100),
lg1000 = 3,
lg10 = 1,
lg1 = 0 (поскольку 100 = 1), и т.д.
логарифмы многими полезными свойствами, необходимыми для сложных вычислений. среди них два важных соотношения:
lgab = lga + lgb,
lgab = blga.
например, для нейтральных растворов, где [h+] = 10–7, получим:
ph = – lg10–7 = – (– 7 lg10) = 7.
концентрация ионов водорода не обязательно выражается только как 10n. например, имеется раствор с концентрацией ионов водорода [h+] = 5,1·10–3. каков рн такого раствора? используем одно из свойств логарифмов:
рн = – lg 5,1·10–3 = – (lg 5,1 + lg10–3).
для второго члена этой суммы можно применить другое свойство логарифмов:
рн = – (lg 5,1 + lg10–3) = – (lg 5,1 – 3 lg10), или
рн = 3 – lg 5,1.
с инженерного калькулятора можно вычислить значение lg 5,1 = 0,7. отсюда рн = (3 – 0,7) = 2,7.
область применения водородного показателя широка: это не только аналитическая , но и пищевая промышленность, экология, биология, медицина. например, рн свежего молока должен быть в интервале 6,6–6,9. речная и водопроводная вода имеют рн немного меньше 7. в морской воде среда слабощелочная (рн = 8). кровь человека должна сохранять значение рн в узком интервале: 7,35–7,45. изменение на 0,1–0,2 единицы рн может иметь тяжелые последствия для здоровья. косметические и моющие средства проходят проверку на оптимальное значение рн для того, чтобы при их использовании не страдала кожа.
** но как вычисляют рн в растворах слабых кислот и оснований? ведь в этом случае распад на ионы происходит не полностью. например, в растворе слабой кислоты концентрация ионов h+ уже не будет равна концентрации самой кислоты. здесь на приходит закон разбавления оствальда для слабых электролитов (см. предыдущий параграф). константа диссоциации кд и степень диссоциации α слабых электролитов связаны соотношением:
кд = α2с
(где с - концентрация слабого электролита в моль/л). отсюда:
в этом выражении можно умножить левую и правую части на концентрацию с:
но дело в том, что αс = [h+] (здесь мы рассматриваем пример слабой кислоты). поэтому можно записать:
таким образом, зная концентрацию раствора слабой кислоты и ее константу диссоциации, можно рассчитать концентрацию ионов водорода h+, а затем и рн раствора. однако следует помнить, что такой способ годится только для определения рн растворов слабых кислот и оснований.
Объяснение:
В данном гальваническом элементе цинковый электрод будет являться анодом, а а свинцовый электрод - катодом.
Схема гальванического элемента:
A (-)Zn │ Zn2+ ││ Pb2+ │Pb (+) K
[Zn2+]=1 моль/л [Pb2+]=1 моль/л
Вертикальная линия обозначает границу раздела между металлом и раствором, а двойная вертикальная линия – границу раздела между двумя жидкими фазами – двумя растворами электролитов.
Cтандартные значения электродных потенциалов φ( Zn2+/Zn) =
- 0,762 B и φ( Pb2+/Pb) = -0,126 B
При работе гальванического элемента на аноде протекает процесс окисления цинка: Zn = Zn2+ + 2 ē.
Электроны по проводнику переходят на cвинцовый электрод, на котором протекает процесс восстановления ионов свинца: Pb2+ + 2ē = Pb
Чтобы рассчитать ЭДС гальванического элемента нужно из электродного потенциала катода вычесть электродный потенциал анода: - 0,126 B - (- 0,762) = 0,636 В.
Концентрации ионов в растворе 1 моль/л являются стандартными.