Основное применение бензола - это синтез множества других органических веществ. Процесс, в течение которого можно получить продукт, - это коксование угля. Если нагревать это сырье при высоких температурах и при этом ограничить доступ воздуха, то будет образовываться множество летучих продуктов горения, среди которых выделяют и бензол.
Область применения бензола довольно обширна. Основным направлением стало получение других веществ на основе этого реактива. Так, к примеру, если использовать реакцию нитрирования, то можно получить нитробензол, если провести процедуру хлорирования, то можно получить хлорбензол, который в жизни чаще всего называют растворителем, а также множество других составов. Широкое распространение получила процедура применения бензола в качестве исходного продукта для создания лекарственных и душистых веществ. Часто применяется в процессах синтеза мономеров для высокомолекулярных соединений, для создания красителей.
Производные хлора и бензола в настоящее время успешно используются в сельском хозяйстве. Здесь их применяют в качестве химических средств защиты для растений. К примеру, продукт, в котором атомы водорода замещены атомами хлора, гексахлорбензол, активно применяется в качестве продукта для сухого протравливания семян пшеницы и ржи.
Если перечислять области применение бензола, то их очень много. Однако в некоторых он играет одну из ключевых ролей, например в химической промышленности. Здесь этот компонент является одним из наиболее востребованных, так как он является исходным элементом для производства множества других, а также является растворителем во многих операциях. Стоит отметить, что бензол растворить практически любые органические соединения. Если в первой половине 20-го века применение бензола приходилось в основном на создание таких составов, как нитро- и динитросоединения, то на сегодняшний день самыми распространенными веществами стали этилбензол, кумол и циклогексан. 60 % всего бензола приходится именно на создание первых двух элементов.
кратко: применяется в медицине; Химическая промышленность; применяется в промышленности.
Химия парникового эффекта
Почти весь поток инфракрасного излучения парниковые газы возвращают из тропосферы. Безвозвратно в космос излучение уходит с уровня тропопаузы. Исключением из этого правила является слой озона, относительное содержание которого растет с высотой.
Своего максимума озоновый слой достигает на высоте 20-25 км. Озон тропосферы от общего его содержания составляет только 10%. Если он будет истощен на 6,8%, то его содержание сократится на 2,6%, а содержание метана сократится на 5,5%. Одновременно с этим в тропосфере увеличивается концентрация свободных радикалов ОН, являющихся важным окислителем, на 5%, атомарного кислорода на 12%.
Истощение озонового слоя в тропосфере приводит к повышенному потоку ультрафиолетового излучения в диапазоне 290-320 нм.
ОН, вступая в реакции с молекулами метана и фторуглеродов, уменьшают их концентрацию в тропосфере и снижают прямой парниковый эффект этих веществ.
При разрушении небольшого количества тропосферного озона происходит дополнительное снижение парникового эффекта.
В значительной степени на парниковый эффект влияют тропосферные химические процессы.
Причины этого:
рост тропосферного озона связан с концентрацией и эмиссией метана, оксида углерода, оксидов азота;
расходование ОН радикалов в реакциях с увеличившимся количеством метана и оксида углерода, уменьшает их концентрацию;
дополнительное увеличение концентрации ОН радикалов.
Окисление метана и оксида углерода с образованием озона, происходит следующим образом – сначала идет окисление метана, затем оксида углерода и оксида азота.
К парниковым газам относятся углекислый газ, метан, закись азота, перфторуглероды, гидрофторуглероды, гексафторид серы.
Источником изменений климата является углекислый газ (диоксид карбона), на долю которого приходится 64% глобального потепления. Что касается метана (СН4), то он имеет природное и антропогенное происхождение. Его доля в глобальном потеплении составляет 20%. По значимости на третьем месте находится закись азота (N2O), на которую приходится 6% глобального потепления.
В таких углеводородных соединениях, как перфторуглероды, фтор частично замещает углерод и основным источником этих газов является производство алюминия, растворителей, электроники.
В углеводородных соединениях гидрофторуглероды водород частично замещается галогенами.
Парниковый газ – гексафторид серы используется в электроэнергетике в качестве электроизоляционного материала. В атмосфере он сохраняется длительное время и относится к активным поглотителям инфракрасного излучения, поэтому имеет потенциальную возможность оказывать влияние на климат длительное время.