Які із наведених нижче солей ВаClNO3, KNa2PO4, Pb(CH3COO)2, Fe(OH)2NO3 взаємодіють з: а) H2SO4, б) NaOH? Назвати початкові солі і продукти можливих реакцій.
Аминокислоты – это соединения, которые содержат две функциональные группы: аминогруппу (-NH2) и карбоксильную группу (-COOH). Общая формулa:
где R – -CH3, - CH2-SH, -CH2–C6H5 и другие. То есть R – боковой радикал, который имеет разную структуру.
В живых организмах встречается около 300 различных аминокислот, но в белках обнаружено двадцать различных аминокислот, из которых построены пептиды. Аминогруппа аминокислоты может присоединять протон и приобретать положительный заряд, подобно тому, как аммиак превращается в ион аммония. Карбоксильная группа может диссоциировать, отдавая протон и приобретать отрицательный заряд.
В зависимости от взаимного расположения амино- и карбоксильной группы аминокислоты разделяют на
.
Например,
NH2 –
CH(CH3) – COOH
-аминопропановая кислота
2-аминопропановая кислота
NH2 –
CH2 – CH2 – COOH
-аминопропановая кислота
3-аминопропановая кислота
В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
Аспарагиновая кислота
Кислая – так как две карбоксильных группы и одна аминогруппа
Изолейцин
Нейтральная – так как одна карбоксильная и одна аминогруппа
Лизин
Основная – так как две аминогруппы и одна карбоксильная
По характеру углеводородного радикала различают алифатические, ароматические, серосодержащие и гетероциклические аминокислоты.
Алифатическая аминокислота
Ароматическая аминокислота
Серосодержащие аминокислоты
Гетероциклические аминокислоты
Систематическая номенклатура: названия аминокислот образуется из соответствующих кислот прибавлением приставки амино- и указанием расположения в углеродной цепи.
2-амино-3-метилбутановая кислота
2-амино-3-метилпентановая кислота
2-аминопентандиовая кислота
Но часто используется другая номенклатура, согласно которой к тривиальному названию карбоновой кислоты добавляется приставка с указанием положения аминогруппы буквой греческого алфавита.
-амино-
-метилмаслянная кислота
-амино-
-метилвалериановая кислота
-аминокислоты играют важную роль в процессах жизнедеятельности животных, растений, к им применяются тривиальные названия.
Изомерия
Для аминокислот характерны следующие виды изомерии:
1. Изомерия углеродного скелета
2-аминобутановая кислота
2-амино-2-метилпропановая кислота
2. Изомерия положения функциональной группы
2-аминобутановая кислота
3-аминобутановая кислота
3. Оптическая изомерия
Все аминокислоты, кроме глицина, содержат асимметрический атом углерода и могут существовать в виде оптических изомеров (зеркальных антиподов). Асимметрический (хиральный) атом углерода – атом углерода, у которого все четыре заместителя разные. Оптическая изомерия природных
-аминокислот играет важную роль в процессах биосинтеза белка.
Конфигурация при асимметрическом углероде определяет аминокислота L- или D- ряда. L- ряд – аминогруппа слева. D-ряд – аминогруппа справа.
Энантиомеры – зеркальные изомеры. D и L – изомеры одной аминокислоты.
1. диссоциируют в водном растворе: а. хлорид калия. 2. катионом является: б. ион натрия 3. формула сильного электролита б. hno3 4. формула вещества, образующего при электролитической диссоциации ионы водорода: а. h2so4 5. взаимодействие гидроксида калия с соляной килотой в водном растворе отображается сокращённым ионным уравнением: а. h + oh = h2o 6. окраска фенолфталеина в растворе, полученном при взаимодействии оксида калия с водой: б. малиновая 7. соляная кислота не взаимодействует с металлом: б. медью 8. с раствором гидроксида натрия взаимодействует вещество, формула которого: а. so3 9. формула оксида,взаимодействующего с водой: б. p2o5 10. веществом x в предложенном уравнении реакцииx + h2so4 (разб.) = feso4 + h2oявляется: б. feo 11. формула оксида: 1-so3 формула гидроксида: 2-h2so4 формула оксида: 2-cao формула гидроксида: 4-ca(oh)2 формула оксида: 3-co2 формула гидроксида: 1-h2co3 формула оксида: 4-so2 формула гидроксида: 3-h2so3
Методом фільтрування (пропускання суміші води і нерозчинної речовини через фільтр,який утримує в собі нерозчинні речовини) методом випаровування (ємність з сумішшю води і нерозчинної речовини потрібно нагрівати доки вода не почне випаровуватись з суміші,через деякий час вода повністю випарується і в ємності залишиться осад з тієї самої нерозчинної речовини) методом відстоювання (ємність з сумішшю води і нерозчинної речовини потрібно залишити відстоюватися(в спокійному стані) через деякий час нерозчинна речовина випаде в осад,після чого потрібно злити воду й за необхідності повторити процедуру декілька разів до повного очищення води від нерозчинної речовини)
Объяснение:
Состав, строение аминокислот
Аминокислоты – это соединения, которые содержат две функциональные группы: аминогруппу (-NH2) и карбоксильную группу (-COOH). Общая формулa:
где R – -CH3, - CH2-SH, -CH2–C6H5 и другие. То есть R – боковой радикал, который имеет разную структуру.
В живых организмах встречается около 300 различных аминокислот, но в белках обнаружено двадцать различных аминокислот, из которых построены пептиды. Аминогруппа аминокислоты может присоединять протон и приобретать положительный заряд, подобно тому, как аммиак превращается в ион аммония. Карбоксильная группа может диссоциировать, отдавая протон и приобретать отрицательный заряд.
В зависимости от взаимного расположения амино- и карбоксильной группы аминокислоты разделяют на
.
Например,
NH2 –
CH(CH3) – COOH
-аминопропановая кислота
2-аминопропановая кислота
NH2 –
CH2 – CH2 – COOH
-аминопропановая кислота
3-аминопропановая кислота
В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
Аспарагиновая кислота
Кислая – так как две карбоксильных группы и одна аминогруппа
Изолейцин
Нейтральная – так как одна карбоксильная и одна аминогруппа
Лизин
Основная – так как две аминогруппы и одна карбоксильная
По характеру углеводородного радикала различают алифатические, ароматические, серосодержащие и гетероциклические аминокислоты.
Алифатическая аминокислота
Ароматическая аминокислота
Серосодержащие аминокислоты
Гетероциклические аминокислоты
Систематическая номенклатура: названия аминокислот образуется из соответствующих кислот прибавлением приставки амино- и указанием расположения в углеродной цепи.
2-амино-3-метилбутановая кислота
2-амино-3-метилпентановая кислота
2-аминопентандиовая кислота
Но часто используется другая номенклатура, согласно которой к тривиальному названию карбоновой кислоты добавляется приставка с указанием положения аминогруппы буквой греческого алфавита.
-амино-
-метилмаслянная кислота
-амино-
-метилвалериановая кислота
-аминокислоты играют важную роль в процессах жизнедеятельности животных, растений, к им применяются тривиальные названия.
Изомерия
Для аминокислот характерны следующие виды изомерии:
1. Изомерия углеродного скелета
2-аминобутановая кислота
2-амино-2-метилпропановая кислота
2. Изомерия положения функциональной группы
2-аминобутановая кислота
3-аминобутановая кислота
3. Оптическая изомерия
Все аминокислоты, кроме глицина, содержат асимметрический атом углерода и могут существовать в виде оптических изомеров (зеркальных антиподов). Асимметрический (хиральный) атом углерода – атом углерода, у которого все четыре заместителя разные. Оптическая изомерия природных
-аминокислот играет важную роль в процессах биосинтеза белка.
Конфигурация при асимметрическом углероде определяет аминокислота L- или D- ряда. L- ряд – аминогруппа слева. D-ряд – аминогруппа справа.
Энантиомеры – зеркальные изомеры. D и L – изомеры одной аминокислоты.
L-аланин
D-аланин
Объяснение: