1)Уравнение реакции в общем виде: 4Ме + 3О2 = 2Ме2О3 Отношение количества вещества (Ме) к количеству вещества (Ме2О3) по уравнению реакции =4:2 или 2:1,следовательно (ню) Ме в 2 раза больше, чем Ме2О3. 2)Обозначим М (молярную массу Ме) через Х, тогда М (молярная масса оксида Ме2О3) будет равна 2Х +48 3)количество вещества Ме= м (масса 3г) / м (молярн. масса Х) = 3 / Х г/моль (а) количество вещества оксида = м (5,67г ) / М (2Х +48) =5,67 / 2х+48 г/моль (б) 4)Тогда, т. к. количество вещества Ме в 2 раза больше, следовательно, если значение (а) разделим на (б) = 2 3 / Х : (деление) 5,67 / 2Х +48 =2 3(2Х +48) :( 2Х ) х 5,67=2 6Х +144=11,34Х Х=27(г/моль) т. к. (Х) -молярная масса неизвестного металла, следовательно, это металл Аl(алюминий, степень окисления в оксиде у алюминия (+3),М =27 г моль.
У неорганічній хімії важливу роль відіграють хімічні реакції. Найважливішими з них є Кислотно-основні реакції та Окисно-відновні реакції. Як правило ці реакції є рівноважними та з високою ентальпією. Через це хімічні реакції у неорганічній хімії є дуже швидкими і з високим виходом продуктів реакції. На противагу, хімічні реакції у органічній хімії є часто повільними і не завжди з високим виходом продуктів реакції.
У процесі окисно-відновної реакції відновник віддає електрони, тобто окиснюється; окисник приєднує електрони, тобто відновлюється. Причому будь-яка окисно-відновна реакція є єдність двох протилежних перетворень — окиснення та відновлення, що відбуваються одночасно та без відриву одне від одного. Типовими і найпростішими окисно-відновними реакціями є утворення сполук з окремих елементів: наприклад утворення води з кисню і водню, чи корозія металів коли, наприклад, Ферум реагує з киснем з утворенням оксидів.
У кислотно-основних реакціях відбувається перенесення протону. Кислота передає основі протон. При цих реакціях в основному утворюється вода і сіль. Наприклад:
{\displaystyle \mathrm {H_{3}O_{(aq)}^{+}+Cl_{(aq)}^{-}+Na_{(aq)}^{+}+OH_{(aq)}^{-}\longrightarrow \ Na_{(aq)}^{+}+Cl_{(aq)}^{-}+2\ H_{2}O} }{\displaystyle \mathrm {H_{3}O_{(aq)}^{+}+Cl_{(aq)}^{-}+Na_{(aq)}^{+}+OH_{(aq)}^{-}\longrightarrow \ Na_{(aq)}^{+}+Cl_{(aq)}^{-}+2\ H_{2}O} }
Хлоридна кислота + Гідроксид натрію реагують у водному розчині з утворенням Хлориду натрію та води.
Такі реакції протікають також швидко і легко контролюються за до індикатора, що дозволяє використовувати їх у аналітичній хімії.
Утворення нерозчинних чи газоподібних продуктів реакції є їх важливою рушійною силою. При цьому ці продукти залишають зону реакції і при цьому зрушують рівновагу у сторону утворення цих продуктів так, що реакція протікає до кінця. Так наприклад при реакції розчинів хлориду барію та сульфату натрію, утворюється важкорозчинний сульфат барію. При його відфільтруванні у розчині, що залишився не знаходять більше йонів барію.
{\displaystyle \mathrm {BaCl_{2}+Na_{2}SO_{4}\longrightarrow BaSO_{4}+2\ NaCl} }{\displaystyle \mathrm {BaCl_{2}+Na_{2}SO_{4}\longrightarrow BaSO_{4}+2\ NaCl} }
Реакції такого типу відіграють також важливу роль у аналітичній хімії. Різномнітні неорганічні сполуки можуть при високих температурах розкладатися з виділенням газів. Так при нагріванні карбонат кальцію, не плавлячись, розкладається з утворенням оксиду кальцію і діоксиду вуглецю:
{\displaystyle \mathrm {CaCO_{3}\longrightarrow CaO+CO_{2}} }{\displaystyle \mathrm {CaCO_{3}\longrightarrow CaO+CO_{2}} }↑