1. Напишіть молекулярну формулу води та обчисліть її відносну если я поставлю больше то прийдут халявшики и напиут в ответе щабащбащбащбабщбабащбащ молекулярну масу.
2. Розв’яжіть задачу. Обчисліть масові частки елементів у воді.
3. Виберіть речовини розчинні у воді та нерозчинні з даного переліку:
кухонна сіль, цукор, крохмаль, кисень, вуглекислий газ, золото, пісок,
глюкоза, сірка, лимонна кислота.5. Опишіть, що вам відомо про поширеність води у природі з інших
предметів та власного досвіду.1. Назвіть не менше трьох розчинів, які ви найчастіше використовуєте у
побуті.Задача - обчисліть масові частки
елементів у вуглекислому газі.4. Опишіть поширення води у природі за схемою:
в організмі людини
на Землі
у Космосі 1. Запишіть формулу для обчислення масової частки розчиненої
речовини в розчину.
2. У чисельнику розмістіть відому вам масу речовини, що наявна в
розчині.
3. У знаменнику – масу розчину.
4. Поділіть числове значення чисельника на числове значення
знаменника і ви отримаєте масову частку в частках від одиниці.
5. Помножте отримане число на 100% і ви отримаєте значення масової
частки у відсотках.
Виконайте завдання
1. Розв’яжіть задачу. Обчисліть масову частку натрій хлориду (кухонної
солі) - NaCl в розчині масою 200 г, в якому розчинено сіль масою 40 г.
2. Розв’яжіть задачу. Обчисліть масову частку цукру в розчині масою
150 г, в якому розчинено речовину масою 60 г.
ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.