NO - ковалентная полярная связь,
N2 - ковалентная неполярная связь,
O2 - ковалентная неполярная связь,
F2 - ковалентная неполярная связь,
Cl2 - ковалентная неполярная связь,
ZnCl2 - ионная связь,
NH3 - ковалентная полярная связь,
NaCl - ионная связь,
PH3 - ковалентная полярная связь,
CuBr2 - ионная связь,
FeS - ионная связь,
H2S - ковалентная полярная связь,
H2 - ковалентная неполярная связь,
CH4 - ковалентная полярная связь,
CaCl2 - ионная связь,
N2O3 - ковалентная полярная связь,
SiH4 - ковалентная полярная связь,
Na2S - ионная связь,
FeCl3 - ионная связь,
H2Se - ковалентная полярная связь,
K2Se - ионная связь,
J2 - ковалентная неполярная связь,
CaS - ионная связь,
HgO - ионная связь,
S8 - ковалентная неполярная связь,
LiCl - ионная связь,
N2O3 - ковалентная полярная связь. найдёшь ответ сам
Объяснение:
Mr[KMnO4] = Ar[K] + Ar[Mn] + Ar[O] * 4 = 39.0983 + 54.938045 + 15.9994 * 4 = 158.033945 = 158
Массовая доля калия (K) = 39.0983 : 158.033945 * 100 = 24.74 %
Массовая доля марганца (Mn) = 54.938045 : 158.033945 * 100 = 34.763 %
Массовая доля кислорода (O) = 63.9976 : 158.033945 * 100 = 40.496 %
Mr[HgO] = Ar[Hg] + Ar[O] = 200.59 + 15.9994 = 216.5894 = 217
Массовая доля ртути (Hg) = 200.59 : 216.5894 * 100 = 92.613 %
Массовая доля кислорода (O) = 15.9994 : 216.5894 * 100 = 7.387 %
Исходя из расчетов можно сделать вывод, что в KMnO4 (40.496 %) кислорода содержится больше, чем в HgO (7.387 %).
Объяснение:
Большинство промышленных полимеров — органические вещества, которые при температуре 500 °С воспламеняются и горят (при тепловом импульсе более 0,85 кДж/м2 сгорает все). Горение осуществляется в результате воспламенения и горения газообразных продуктов термоокислительного пиролиза и представляют собой непрерывный многостадийный процесс: 1) аккумуляция тепловой энергии от источника зажигания, 2) разложение полимера с выделением летучих продуктов пиролиза (в ряде случаев — рекомбинация твердых или жидких продуктов разложения в более устойчивые соединения — пиролизованные остатки, в том числе карбонизованные, кокс), 3) воспламенение газообразных веществ, 4) горение газообразных веществ и кокса. Суммарная скорость процесса горения определяется наиболее медленной из перечисленных стадий.
Полимеры по своему поведению при горении так же, как и при нагревании в средах с различной концентрацией кислорода, подразделяются на две группы: деструктирующиеся с разрывом связей основной цепи и образованием низкомолекулярных газообразных и жидких продуктов и коксующиеся. Образующиеся низкомолекулярные газообразные и жидкие продукты пиролиза могут быть горючими и негорючими.
Возгорание горючих газообразных продуктов пиролиза происходит при достижении нижнего концентрационного предела воспламенения. Во многих случаях наблюдается разрушение материала и вынос в газовую фазу твердых частиц с горящей поверхности полимера.
Горючесть полимерных материалов, в основном, зависит от соотношения теплоты, выделяемой при сгорании продуктов пиролиза, и теплоты, необходимой для их образования и газификации.
Для снижения горючести полимеров используют: 1) замедление реакций в зоне пиролиза снижением скорости газификации полимера и количества образующихся горючих продуктов; 2) снижение тепло- и массообмена между пламенем и конденсированной фазой; 3) ингибирование радикалоцепных процессов в конденсированной фазе при ее нагреве и в пламени. Практически указанные направления реализуются путем использования химически модифицированных полимеров, в том числе с минимальным содержанием водорода в структуре, термоустойчивых (типа полиариленов и полигетероариленов), путем введения в состав полимерного материала минеральных наполнителей, антипиренов, нанесение огнезащитных покрытий, а также комбинацией этих методов.