Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.
Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.
Они бывают солеобразующими и несолеобразующие.
Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:
CuO + 2HCl → CuCl2 + H2O.
В результате химических реакций можно получать и другие соли:
CuO + SO3 → CuSO4.
Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.
Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.
Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.
Химические свойства основных оксидов
1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:
Na2O + H2O → 2NaOH.
2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли
Na2O + SO3 → Na2SO4.
3. Реагируют с кислотами, образуя соль и воду:
CuO + H2SO4 → CuSO4 + H2O.
4. Реагируют с амфотерными оксидами:
Li2O + Al2O3 → 2LiAlO2.
Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.
Химические свойства кислотных оксидов
1. Взаимодействуют с водой, образуя кислоту:
SO3 + H2O → H2SO4.
Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).
2. Реагируют с основанными оксидами с образованием соли:
CO2 + CaO → CaCO3
3. Взаимодействуют со щелочами, образуя соль и воду:
CO2 + Ba(OH)2 → BaCO3 + H2O.
В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.
Химические свойства амфотерных оксидов
1. Взаимодействуют с кислотами, образуя соль и воду:
ZnO + 2HCl → ZnCl2 + H2O.
2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:
ZnO + 2NaOH → Na2 ZnO2 + H2O.
При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:
ZnO + 2 NaOH + H2O => Na2[Zn(OH)4].
Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;
Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.
Слово " атом" переводится с древнегреческого языка как " неделимый" . Так и предполагалось почти до конца XIX века. В 1911 г. Э. Резерфорд обнаружил, что в атоме существует положительно заряженное ядро. Позже было доказано, что оно окружено электронной оболочкой.
Электронная оболочка – совокупность движущихся вокруг ядра электронов.
Таким образом, атом представляет собой материальную систему, состоящую из ядра и электронной оболочки.
Атомы очень маленькие – так, по толщине бумажного листа укладываются сотни тысяч атомов. Размеры атомных ядер – еще в сто тысяч раз меньше размеров атомов.
Ядра атомов заряжены положительно, но состоят они не только из протонов. Ядра содержат еще и нейтральные частицы, открытые в 1932 году и названные нейтронами. Протоны и нейтроны вместе носят название нуклоны – то есть ядерные частицы.
Нуклоны – общее название протонов и нейтронов.
Любой атом в целом электронейтрален, а это значит, что число электронов в электронной оболочке атома равно числу протонов в его ядре.
Таблица 11.Важнейшие характеристики электрона, протона и нейтрона
Характеристика
Электрон
Протон
Нейтрон
Год открытия
1897
1919
1932
Первооткрыватель
Джозеф Джон Томсон
Эрнест Резерфорд
Джеймс Чедвик
Символ
е–
p+
no
Масса: обозначение
значение
m(e– )
9,108. 10–31 кг
m(p+)
1,673. 10–27 кг
m(no)
1,675. 10–27 кг
Электрический заряд
–1,6. 10–19 Кл = –1е
+1,6. 10–19 Кл = +1е
0
Радиус
?
10–15 м
10–15 м
Название " электрон" происходит от греческого слова, означающего " янтарь" .
Название " протон" происходит от греческого слова, означающего " первый" .
Название " нейтрон" происходит от латинского слова, означающего " ни тот, ни другой" (имеется в виду его электрический заряд).
Знаки " –" , " +" и " 0" в символах частиц занимают место правого верхнего индекса.
Размер электрона столь мал, что в физике (в рамках современной теории) вообще считается некорректным говорить об измерении этой величины.
Image228a.gif (141 bytes)ЭЛЕКТРОН, ПРОТОН, НЕЙТРОН, НУКЛОН, ЭЛЕКТРОННАЯ ОБОЛОЧКА.
Image228b.gif (137 bytes) 1.Определите, насколько масса протона меньше массы нейтрона. Какую часть от массы протона составляет эта разница (выразите ее в виде десятичной дроби и в процентах)?
2.Во сколько раз (приближенно) масса любого нуклона больше массы электрона?
3.Определите, какую часть от массы атома составит масса его электронов, если в состав атома входят 8 протонов и 8 нейтронов. 4.Как вы думаете, удобно ли использовать единицы международной системы единиц измерений (СИ) для измерений масс атомов?
[предыдущий раздел] [содержание] [следующий раздел]
4.2. Взаимодействия между частицами в атоме. Атомные ядра
Между всеми заряженными частицами атома действуют электрические (электростатические) силы: электроны атома притягиваются к ядру и вместе с тем отталкиваются друг от друга. Действие заряженных частиц друг на друга передается электрическим полем.Image673.gif
Вам знакомо уже одно поле – гравитационное. Подробнее о том, что такое поля, и о некоторых их свойствах вы узнаете из курса физики.
Все протоны в ядре заряжены положительно и за счет электрических сил отталкиваются друг от друга. Но ядра же существуют! Следовательно, в ядре, кроме электростатических сил отталкивания, действует еще какое-то взаимодействие между нуклонами, за счет сил которого они притягиваются друг к другу, причем это взаимодействие – значительно сильнее электростатического. Эти силы называются ядерными силами, взаимодействие – сильным взаимодействием, а поле, передающее это взаимодействие – сильным полем.
В отличие от электростатического, сильное взаимодействие ощущается только на коротких расстояниях – порядка размеров ядер. Но силы притяжения, вызванные этим взаимодействием (Fя). во много раз больше электростатических (Fэ). Отсюда – " прочность" ядер во много раз больше " прочности" атомов. Поэтому в химических явлениях изменяется только электронная оболочка,