Вопросы, требующие однозначного ответа(ОТВЕТ ДА ИЛИ НЕТ И ВСЕ) 1. Коферментом аминотрансфераз служит ФАД.
2. В процессе трансаминирования выделяется аммиак.
3. Возможно ли превращение пировиноградной кислоты в аланин в организме человека?
4. Является ли фенилаланин предшественником серотонина?
5. Используют ли определение активности аспартатаминотрансферазы в сыворотке крови челове-ка для диагностики инфаркта миокарда?
6. Нужен ли витамин В1 для реакций трансаминирования?
7. Усиливается ли глюконеогенез при сахарном диабете?
8. Участвуют ли лизин и треонин в реакциях трансаминирования?
9. Протеиназы, амилазы и липазы относятся к классу гидролаз.
10.Таурин является продуктом превращения цистеина.
11.Скатол и индол образуются в кишечнике из аминокислоты тирозина.
12.Соляная кислота в желудке активации пепсиногена.
13.При дезаминировании аминокислот в организме образуются биогенные амины.
14.Пепсин относится к эндопептидазам.
15.Участвует ли трипсин в активации химотрипсиногена?
16.Возможно ли самопереваривание пепсина в желудке?
17.Относятся ли карбокси- и аминопептидазы к эндопептидазам?
18.Глицин участвует в синтезе пуриновых оснований.
19.Аргинин служит источником образования оксида азота.
20.Монооксигеназы участвуют в образовании катехоламинов.
21.Триптофан может служить предшественником образования рибонуклеотида никотиновой кис-лоты (витамина РР).
22.Серотонин образуется из серина.
23.Входит ли глутаминовая кислота в состав глутатиона?
24.Является ли гомогентизиновая кислота промежуточным продуктом превращения фенилалани-на?
25.Возможно ли превращение гистидина в глутаминовую кислоту?
26.Является ли креатинфосфат макроэргическим соединением?
27.Может ли цистеин подвергаться процессу декарбоксилирования?
28.Возможны ли превращения глицина в серин и треонин?
номенклатуре, знакомству с пептидной группой и пептидной связью, химическими свойствами аминокислот, пептидам и полипептидам, знакомству с глицином как представителем аминокислот, биологической роли аминокислот, белкам, их структуре, химическим свойствам.
Глоссарий
Аминокислота – это азотсодержащее органическое соединение, в составе которой есть как аминогруппа, так и карбоксильная группа.
Белки – органические полимеры, в состав которых входят остатки аминокислот, соединённые пептидной связью. Количество аминокислотных остатков в белках обычно более 50.
Биуретовая реакция – качественная цветная реакция на пептидные связи. При добавлении к белку раствора щёлочи и сульфата меди (II) раствор приобретает красно-фиолетовую окраску.
Гидролиз белка – распад белка на отдельные аминокислоты в водном растворе кислот или щелочей.
Денатурация белка – разрушение вторичной, третичной и четвертичной структуры белка при нагревании, действии растворов солей тяжёлых металлов, кислот и щелочей. При денатурации белок сворачивается и выпадает в осадок.
Ксантопротеиновая реакция – качественная цветная реакция концентрированной азотной кислоты с белками, содержащими остатки ароматических аминокислот. При добавлении концентрированной азотной кислоты к белку и нагревании сначала происходит денатурация белка, а затем появляется жёлтое окрашивание.
Олигопептиды – органические соединения, состоящие из 10–20 остатков аминокислот, связанных пептидными связями.
Пептидная группа – группа атомов в составе пептидов, состоящая из атомов углерода, кислорода, азота и водорода.
Пептидная связь – связь между атомами углерода и азота в пептидной группе.
Пептиды – органические соединения, состоящие из нескольких аминокислотных остатков, соединённых пептидной связью.
Полипептиды – макромолекулы, состоящие из 20–50 аминокислотных остатков, соединенных пептидной связью.
Простейшим представителем аминокислот является глицин – аминоуксусная (аминоэтановая) кислота
Все α-аминокислоты, кроме глицина, имеют в своем составе асимметрический атом, который следует сразу за карбоксильной группой. У этого атома углерода все заместители разные.
Благодаря этому атому, для α-аминокислот характерна оптическая изомерия. В природе распространены только L-α-аминокислоты.
Биологическое значение аминокислот
Из аминокислот наибольшее значение имеют α-аминокислоты, так как они входят в состав белковых молекул, из которых построено всё живое вещество.
Растения и бактерии самостоятельно синтезировать все необходимые для них аминокислоты. Млекопитающие, в том числе и человек, не могут синтезировать ряд аминокислот, они должны поступать в организм с пищей. К таким незаменимым аминокислотам относятся метионин, треонин, фенилаланин, лейцин, изолейцин, валин, лизин, триптофан.
α-Аминокислоты необходимы человеку для образования белков. Большую часть аминокислот для этих целей человек получает с пищей. Некоторые аминокислоты можно синтезировать. Для регулирования обменных процессов аминокислоты применяются как лекарства (например, глицин).
Получение аминокислот
В промышленности α-аминокислоты получают гидролизом белков.
Можно синтезировать аминокислоты из хлорпроизводных карбоновых кислот и аммиака.
Cl-CH2-COOH + 2NH3 → NH2-CH2-COOH + NH4Cl
Физические и химические свойства аминокислот
Аминокислоты – кристаллические вещества без цвета и запаха, сладковатые на вкус. Хорошо растворяются в воде.
Аминокислоты – амфотерные соединения, так как аминогруппа проявляет основные свойства, а карбоксильная группа – кислотные.
Карбоксильная группа в составе аминокислот позволяет им реагировать со спиртами. В результате реакции образуются сложные эфиры.
Пептиды
Аминокислоты могут реагировать друг с другом, аминогруппа одной кислоты соединяется с карбоксильной группой другой кислоты, при этом происходит выделение воды.
Группа атомов СО-NH называется пептидной (или амидной) группой, а связь между атомами углерода и азота – пептидной (амидной) связью.
Соединения, образованные из нескольких аминокислот с пептидной связи, называются пептидами.
Называют пептиды перечислением тривиальных названий аминокислот, входящих в состав пептида, начиная с аминокислотного остатка со свободной аминогруппой (N-конец), заменяя в названии аминокислот окончание «ин» на «ил». Последней называют аминокислоту со свободной карбоксильной группой (С-конец), её название не изменяется. Часто название пептида записывают с трёхбуквенных латинских сокращённых наименований аминокислот.
Молекулы, в состав которых входит 10–20 остатков аминокислот, называют олигопептидами.
Макромолекулы, образованные 20–50 остатками аминокислот называют полипептидами.
Полипептиды входят в состав многих гормонов. Нейропептиды регулируют работу мозга, процессы сна, обучения, обладают обезболивающим эффектом.
.