1.Пространство вокруг ядра, где наиболее вероятно нахождение электрона, называется орбиталью этого электрона, или электронным облаком.
2.Электроны, облака которых в атоме совместились, называют спаренными, а несовмещённые – неспаренными.
3.Форма электронных облаков. Электронное облако не имеет резко очерченных границ в пространстве, поэтому представления о размерах и форме электронного облака требуют специального пояснения. Электронное облако атома водорода. В этом облаке можно провести поверхности, на которых электронная плотность будет иметь одинаковое значение. В случае атома водорода это сферические поверхности, внутри которых заключена большая или меньшая часть электронного облака. Если проведённая поверхность охватывает 90 % заряда и массы электрона, её называют граничной поверхностью. Размер и форму граничной поверхности отождествляют с размером и формой электронного облака. Рассмотрим зависимость вероятности W* пребывания электрона в данной точке пространства от её отдалённости от ядра r на примере 1s-электрона атома водорода. Цифра 1 показывает, что главное квантовое число n = 1, а буква s — равенство нулю его орбитального квантового числа: l = 0. Из рис. 7 следует, что вероятность обнаружения электрона на малых расстояниях от ядра, так же, как и на больших, близка к нулю. На некотором расстоянии от ядра r0 вероятность нахождения электрона максимальна. Для атома водорода это расстояние точно совпадает с радиусом первой боровской орбиты и равно 0,053 нм. Однако следует иметь в виду, что, по Бору, эта величина показывает, на каком расстоянии от ядра электрон находится, а по представлениям квантовой механики это расстояние отвечает максимальной вероятности обнаружения электрона. Следовательно, в отличие от модели атома по Бору, электрон может находиться и на других расстояниях от ядра — как меньших, так и больших 0,053 нм. Характер зависимости W от r для 1s-электрона свидетельствует о том, что электронное облако 1s-электрона обладает сферической симметрией, т. е. имеет форму шара с ядром в центре. s-Электроны с главным квантовым числом n, равным 2, 3, 4 ...также обладают сферической симметрией. По мере того, как главное квантовое число возрастает, расстояние наиболее вероятного пребывания электрона от ядра также увеличивается, и электронное облако становится более размытым. На рис. 8 схематически показано электронное облако 2s-орбитали (2s-электрона) . Для 2p-электронов (главное квантовое число n = 2, орбитальное квантовое число l = 1) кривая зависимости вероятности обнаружения электрона W от расстояния r имеет максимум (рис. 9). Такому распределению вероятности обнаружения 2p-электрона соответствует форма электронного облака, напоминающая двойную грушу или восьмёрку. Магнитное квантовое число 2p-электронов может иметь три значения: –1, 0 и +1, что соответствует ориентации восьмёрки вдоль трёх координатных осей: x, y, z. Иными словами, три p-электронных облака ориентированы в пространстве во взаимно перпендикулярных направлениях. Поэтому три 2p-электронных облака обозначают так: 2px, 2py, 2pz. Электроны всех трёх 2p-орбиталей имеют одинаковую энергию. Как и в случае s-электронов, p-орбитали становятся более размытыми, когда главное квантовое число возрастает, однако сохраняют ту же симметрию — подобны восьмёрке. Для 3d-электронов (главное квантовое число n = 3, орбитальное квантовое число l = 2) возможны пять вариантов пространственного расположения электронного облака, отвечающие пяти значениям магнитного квантового числа m: –2, –1, 0, +1, +2. Все электроны 3d-орбиталей имеют одинаковую энергию.
Объяснение:
Аминами называются производные аммиака, в молекулах которых один или несколько атомов водорода замещены углеводородными радикалами.
CH3 – NH2 C6H5 – NH2
метиламин фениламин, анилин
Группа NH3 называется аминогруппой.
Наибольшее практическое значение имеет ароматический амин анилин.
Анилин более слабое основание, чем амины предельного ряда.
Строение молекулы анилина
Строение молекулы можно изобразить несколькими :
C6H5 – NH2
(ТУТ РИСУНОЧЕК)
В молекуле анилина у атома азота, как и в молекуле других аминов, имеется неподелённая электронная пара, обуславливающая характерные свойства.
Получение анилина в промышленности основано на реакции восстановления нитробензола, которую в 1842 г. открыл русский учёный Н. Н. Зинин. Нитробензол восстанавливают в присутствии чугунных стружек и солёной кислоты. Вначале выделяется атомный водород, который и взаимодействует с нитробензолом.
УДАЧИ)