Существуют два метода расстановки коэффициентов в окислительно-восстановительных реакциях:
1) метод электронного баланса (МЭБ);
2) метод полуреакций.
В данном пособии будет рассмотрен только метод электронного баланса, при котором учитываются:
а) сумма электронов, отдаваемых всеми восстановителями, которая равна сумме электронов, принимаемых всеми окислителями;
б) одинаковое число одноименных атомов в левой и правой частях уравнения;
в) число молекул воды (в кислой среде) или ионов гидроксида (в щелочной среде), если в реакции участвуют атомы кислорода.
Составление уравнений ОВР легче провести в несколько стадий:
1) установление формул исходных веществ и продуктов реакции;
2) определение степени окисления элементов в исходных веществах и продуктах реакции;
3) определение числа электронов, отдаваемых восстановителем и принимаемых окислителем, и коэффициентов при восстановителях и окислителях;
4) определение коэффициентов при всех исходных веществах и продуктах реакции исходя из баланса атомов в левой и правой частях уравнения.
Пример 1
1. Записываем уравнение реакции:
К2Сг2O7 + K2SO3 + H2SO4 ® Cr2(SO4)3 + K2SO4 + Н2О.
2. Определяем элементы, изменяющие свою степень окисления в процессе реакции:
К2Сг2 +6О7 + K2S+4O3 + H2SO4 ® Cr2+3(SO4)3 + К2S+6O4 + Н2О и условно записываем процессы окисления н восстановления элементов в их соединениях:
окислитель Cr+6 ® Сг+3 - процесс восстановления;
восстановитель S+4 ® S+6 - процесс окисления.
3. Затем составляем электронный баланс. Для этого подсчитываем
число электронов, которое нужно присоединить всеми атомами окислителя, входящими в состав молекулы-окислителя, и прибавляем их число в левой части схемы процесса восстановлении. В данном приме
ре хром из степени окисления +6 переходит в степень окислении +3, поэтому нужно прибавить 3 электрона. Однако в молекуле окислителя К2Сr2O7 содержатся два атома хрома, тогда и в соответствующей схеме указываются эти два атома хрома слева и справа и увеличивается в 2 раза число присоединяемых электронов. Аналогично поступаем и с восстановителем, только теперь в левой части схемы отнимаем электроны. В результате имеем:
2Сr+6 +Зе×2 ® 2Сr +3;
S+4-2e ® S+6.
Электронный баланс достигается тогда, когда числа электронов в каждой из этих схем, взятых целое число раз, равны друг другу. Для этого находим наименьшее общее кратное для числа отданных и принятых электронов - это 6. Видно, что молекула окислителя присоединяет в 3 раза больше электронов, чем молекула восстановителя их отдает. Поэтому, чтобы соблюдался электронный баланс, второй процесс - окисление восстановителя - должен осуществляться в три раза чаше, чем первый.
Объяснение:
Зарядтың сақталу заңы – кез келген тұйық жүйенің (электрлік оқшауланған) электр зарядтарының алгебралық қосындысының өзгермейтіндігі (сол жүйе ішінде қандай да бір процестер жүрсе де) туралы табиғаттың іргелі дәл заңдарының бірі. Ол 18 ғ-да дәлелденген. Теріс электр зарядын тасушы электронның және электр зарядының шамасы электрон зарядына тең оң электр зарядты протонның ашылуы, электр зарядтарының өздігінше емес, бөлшектермен байланыста өмір сүретіндігін дәлелдеді (заряд бөлшектердің ішкі қасиеті болып саналады). Кейінірек электр заряды шамасы жөнінен электрон зарядына тең оң не теріс зарядты элементар бөлшектер ашылды. Сонымен, электр заряды дискретті: кез келген дененің заряды элементар электр зарядына еселі болып келеді. Әрбір бөлшектің өзіне тән белгілі бір электр заряды болатындықтан, бөлшектердің бір-біріне түрлену процесі болмаған жағдайда, зарядтың сақталу заңын бөлшектер саны сақталуының салдары ретінде қарастыруға болады. Мысалы, макроскопиялық дене зарядталған кезде зарядты бөлшектер саны өзгермейді, тек зарядтардың кеңістікте қайтадан тарала орналасуы өзгереді: зарядтар бір денеден басқа бір денеге ауысады.