Винилацетилен СН2 = СН—С=СН, получаемый полимеризацией ацетилена (см. стр. 385), является простейшим углеводородом, содержащим одновременно этиленовую и ацетиленовую связи. Это — газообразное вещество с острым сладковатым запахом, легко сгущающееся в бесцветную жидкость с т. кип. около 5° С и относительной плотностью 0,705 (при 0°С). Винилацетилен дает характерные для ацетиленовых углеводородов соединения с серебром и одновалентной медью. При повышенной температуре он легко полимеризуется. Винилацетилен легко присоединяет бром и галоидоводороды. При присоединении одной молекулы хлористого водорода получается 2-хлорбутадиен-1,3, названный хлоропреном (см. стр. 396). [c.403]
Винилацетилен Бром IV, 2 В хлороформе при —25 С 70-75 372 [c.141]
Винилацетилен присоединяет бром, главным образом в положении 1,4, образуя при этом алленовую систему двойной связи, Напищите уравнение реакции брома с винилацетиленом. [c.35]
Присоединение брома к винилацетилену также дает в качестве главного продукта термодинамически менее устойчивый изомер с алленовой структурой [уравнение (12-30)] [55]. В реакционной смеси были найдены также в небольших количествах продукты присоединения и по двойной и по тройной связи, а в случае присоединения [c.282]
Винилацетилен присоединяет бром, главным образом, в положения 1,4, образуя при этом алленовую систему двойных связей. Напишите уравнение реакции действия брома на винилацетилен. [c.50]
При действии спиртовой щелочи ацетиленовые дибромиды у ке на холоду количественно отщепляли один атом брома с образованием бромзамещенных винилацетиленов. [c.774]
Уравнения (14) и (15) представляют анионотропные перегруппировки, если Y — электроотрицательный заместитель (например, галоген или гидроксил). Один из наиболее важных с практической точки зрения примеров — синтез хлоропрена по Карозерсу. Он обработал винилацетилен хлористым водородом в присутствии хлористой меди и полнил хлоропрен. Это, однако, не обусловлено 1,2-присоединением по тройной связи. Напротив, продукт 1,4-присоединения, 1-хлор-2,3-бутадиен 84а, образующийся первоначально, перегруппировывается под влиянием медной соли с выходом 98% [122]. Соответствующие бром- и иодпроизводные перегруппировываются еще легче [211] [c.656]
Енины с сопряженными связями гидрогенизуются (каталитически или электрохимически) в первую очередь по тройной связи. Винилацетилен и его гомологи строения R H = H—С = СН присоединяют бром главным образом в положения 1,4, образуя алленовую систему л-связей [c.278]
Присоединение к винилацетилену брома в растворе хлороформа при —25° С дало [32], после фракционирования продуктов, главным образом 1,4-дибром-1,2-бутадиен 79 и в меньшем количестве 1,2-дибром-1,3-бутадиен 80. С другой стороны, присоединение бромистого водорода к винилацетилену в присутствии бромистой меди привело к 2-бром-1,3-бутадиену 81, а ирисоединение хлористого водорода к 4-хлор-1,2-бутадиену — 82. Пропенилацетилен и хлористый водород образуют при реакции 2-хлор- [c.591]
A. A. Петров, H. П. Сапов. Исследования в области химии енииовых систем. I. О порядке присоединения брома к винилацетилену. — ЖОХ, [c.119]
Еще ранее при работе с дивинилацетиленом было обнаружено, что в соприкосновении с воздухом он дает взрывчатые продукты. Так как дивинилацетилен быстро окисляется с образованием перекисей, детонирующих с силой гремучей ртути, то необходимы специальные предосторожности против утечек в вентилях и трубопроводах. Управление ими требует специальной техники [51, 52]. Другие получения винилацетилена не имеют промышленного значения. Приводится описание процесса, идущего в паровой фазе [40, 41, 53]. Термическая полимеризация ацетилена над некоторыми металлами [55] и солями [56] дает малые выхода то же самое наблюдается в случае полимеризации при освещении и при действии тихих разрядов [57—59], например в амилене. Было найдено, что бутадиен, получаемый при крекинге нефти, содержит до 0,7 процента винилацетилена [5]. Винилацетилен и дивинилацетилен были получены при действии цинка в бутиловом спирте на 3-этокси-4-бром-1-бутин и, соответственно, 2.5-диэ-токси-1, б-дибром-3-гексин [60, 61] из гексабромдиаце-тилена [62]. [c.257]
Объяснение:
1.Записываем формулу вещества K₂Cr₂O₇
2. Определяем молекулярную массу вещества Mr: для этого открываем ПЕРИОДИЧЕСКУЮ СИСТЕМУ находим атомную массу элементов входящих в состав вещества; если в формуле 2,3, 7 атомов, то соответственно атомную массу умножаем на индекс(цифра внизу); затем все складываем.
Ar(K)=39 Ar(Cr)=52 Ar(O)=16
Mr(K₂Cr₂O₇)=39x2+52x2+16x7=78 + 102 +112 =292
3. Массовая доля обозначается буквой "омега" ω
4. Массовая доля- это часть от общего. Часть это атомные масса соответствующего элемента , общее это молекулярная масса вещества. Массовая доля будет равна атомная масса элемента деленную на молекулярную массу вещества, запишем формулу:
ω=Ar÷Mr
ω(K)=78÷292=0.267
ω(Cr)=102÷292=0.35
ω(O)=112÷292=0.383
( если все массовые доли сложим, то в сумме всегда должна быть единица )
0,267+0,35+0,383=1
5. Если массовую долю умножим на 100% то получим массовую долю в процентах:
ω%(K)=ω(K)×100%=0.267 ×100%=26,7%
ω%(Cr)=ω(Cr)×100%=0,35×100%=35%
ω%(O)=ω(O)×100%=0.383×100%=38,3%
(если все массовые доли в % сложим, то в сумме всегда получим 100 )
26,7%+35%+38,3%=100%)
Например, Вычислите массовые отношения элементов в угольной кислоте , химическая формула которой H₂CO₃.
Mr(H₂CO₃)=1x2+12+16x3=2+12+48=62
ω(H)= 2÷62=0,032 ω%(H)= 0,032 ×100%=0,32%
ω(C)=12÷62= 0.194 ω%(C)= 0.194×100%=19,4%
ω(O)=48÷62=0.774 ω%(O)=0.774 ×100%=77,4%
Еще пример.Вычислите массовые доли элементов в процентах по формулам соединений
а) CuSO₄ - сульфат меди; б) Fe₂O₃ - оксид железа; в) HNO₃ - азотная кислота.
а) Mr(CuSO₄)=64+32+16x4=160
ω%(Cu)=64÷160×100%=40%
ω%(S)=32÷160×100%=20%
ω%(O)=64÷160×100%=40%
б) Mr(Fe₂O₃)=56x2+16x3=160
ω%(Fe)=56÷160×100%=35%
ω%(O)=100%-35%=65%
в)Mr(HNO₃)=1+14+16x3=63
ω%(H)=1÷63×100%=1.58%
ω%(N)=14÷63×100% =22.2%
ω%(O)= 100%-1.58-22.2=76.22%
Объяснение:
ДКМАЙ САМ