ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.
соляная и уксусная к-ты общими св-вами кислот, реагируя с 1) металлами до н mg + 2hcl (разб.) = mgcl2 + h2 ↑
mg + 2ch3cooh → (ch3coo)2mg + h2
2) основными
mgo + 2hcl (разб.) = mgcl2 + h2o
cao + 2ch3cooh → (ch3coo)2ca + h2o
3) основаниями
mg(oh)2 + 2hcl (разб.) = mgcl2 + 2h2o
ch3cooh + naoh → ch3coona + h2o
4) солями при выделении газа или осадка
mgco3 + 2hcl (разб.) = mgcl2 + co2 ↑ + h2o
2ch3cooh + k2co3 → 2ch3cook + co2 + h2o
особые св-ва уксусной к-ты, как орагнического соединения
при нагревании ацетатов с этанолом в присутствии серной кислоты h2so4 происходит реакция этерификации с образованием уксусно-этилового эфира (этилацетата): сн3соон + с2н5он → сн3сооc2h5 + 2h2o при взаимодействии с такими газами как хлор, водород замещается: ch3cooh + cl2 → ch2clcooh + hcl
Это на каком языке я не очень понял?
Объяснение: