m(Fe) -?
1. Находим массу примесей в оксиде железа(lll) :
m(прим.) = ω×m₁÷100 = 9 x 1000÷100= 90г.
2. Находим массу чистого оксида железа(lll) и
1000г - 90г. = 910г.
3. Находим молярную массу M оксида железа(lll) и количество вещества n в оксиде железа(lll) :
M(Fe₂O₃) = 56 х 2 + 16 х 3 = 160г./моль
n= m(Fe₂O₃)÷M(Fe₂O₃) = 910г÷160г./моль= 5,69моль
4. Запишем уравнение реакции алюминотермии:
Fe₂O₃ + 2Al = 2Fe + Al₂O₃
5. Анализируем уравнение реакции: при взаимодействии 1 моль оксида железа(lll) получается 2 моль железа, тогда при взаимодействии 5,69моль оксида железа(lll) получится в два раза больше моль железа: 5,69 х 2= 11,38 моль железа.
6. Находим молярную массу железа и массу железа количеством вещества 11,38моль: M(Fe)=56г./моль
m(Fe) = n x M = 11.38мольх56г./моль=637,28г.
7. ответ: из 1 кг. оксида железа(lll) примесью 9% алюминотермическим методом можно получить железо массой 637,28г.
Объяснение:
Состав, строение аминокислот
Аминокислоты – это соединения, которые содержат две функциональные группы: аминогруппу (-NH2) и карбоксильную группу (-COOH). Общая формулa:
где R – -CH3, - CH2-SH, -CH2–C6H5 и другие. То есть R – боковой радикал, который имеет разную структуру.
В живых организмах встречается около 300 различных аминокислот, но в белках обнаружено двадцать различных аминокислот, из которых построены пептиды. Аминогруппа аминокислоты может присоединять протон и приобретать положительный заряд, подобно тому, как аммиак превращается в ион аммония. Карбоксильная группа может диссоциировать, отдавая протон и приобретать отрицательный заряд.
В зависимости от взаимного расположения амино- и карбоксильной группы аминокислоты разделяют на
.
Например,
NH2 –
CH(CH3) – COOH
-аминопропановая кислота
2-аминопропановая кислота
NH2 –
CH2 – CH2 – COOH
-аминопропановая кислота
3-аминопропановая кислота
В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
Аспарагиновая кислота
Кислая – так как две карбоксильных группы и одна аминогруппа
Изолейцин
Нейтральная – так как одна карбоксильная и одна аминогруппа
Лизин
Основная – так как две аминогруппы и одна карбоксильная
По характеру углеводородного радикала различают алифатические, ароматические, серосодержащие и гетероциклические аминокислоты.
Алифатическая аминокислота
Ароматическая аминокислота
Серосодержащие аминокислоты
Гетероциклические аминокислоты
Систематическая номенклатура: названия аминокислот образуется из соответствующих кислот прибавлением приставки амино- и указанием расположения в углеродной цепи.
2-амино-3-метилбутановая кислота
2-амино-3-метилпентановая кислота
2-аминопентандиовая кислота
Но часто используется другая номенклатура, согласно которой к тривиальному названию карбоновой кислоты добавляется приставка с указанием положения аминогруппы буквой греческого алфавита.
-амино-
-метилмаслянная кислота
-амино-
-метилвалериановая кислота
-аминокислоты играют важную роль в процессах жизнедеятельности животных, растений, к им применяются тривиальные названия.
Изомерия
Для аминокислот характерны следующие виды изомерии:
1. Изомерия углеродного скелета
2-аминобутановая кислота
2-амино-2-метилпропановая кислота
2. Изомерия положения функциональной группы
2-аминобутановая кислота
3-аминобутановая кислота
3. Оптическая изомерия
Все аминокислоты, кроме глицина, содержат асимметрический атом углерода и могут существовать в виде оптических изомеров (зеркальных антиподов). Асимметрический (хиральный) атом углерода – атом углерода, у которого все четыре заместителя разные. Оптическая изомерия природных
-аминокислот играет важную роль в процессах биосинтеза белка.
Конфигурация при асимметрическом углероде определяет аминокислота L- или D- ряда. L- ряд – аминогруппа слева. D-ряд – аминогруппа справа.
Энантиомеры – зеркальные изомеры. D и L – изомеры одной аминокислоты.
L-аланин
D-аланин
Объяснение: