5-9 класс, значит, на пальцах). Представим газ в растворе таким образом: шарики одного цвета (газ) находятся среди тучи шариков другого цвета (растворитель). Естественно, по сравнению с газовой фазой, в растворе все шарики находятся очень плотно друг к другу. Между газом над раствором и газом в растворе совершаются постоянные переходы молекул, туда-сюда. Вот, один шарик газа в результате беспорядочного движения, залетел в раствор, что далее? Теперь он находится среди большого множества других шариков, ему проблематично выбраться, потенциальная энергия отталкивания между шариками мешает, а еще стабилизация газовой молекулы сольватацией, не появлению желания выбраться "с уютного дивана", но мы представим это так: шарики растворителя закрыли для нашего авантюриста выход из раствора, не пускают, всё.
А теперь увеличим температуру, что произойдёт, кинетическая энергия всех частиц увеличится, а значит, и молекула газа в растворе станет более юркой, активной, быстрой и агрессивной, растолкает лобовой атакой все шарики, преграждающие выход наверх. Кинетическая энергия позволит преодолевать потенциальные барьеры. (Вообще здесь есть некоторая сложность, не все газы хуже растворяются при увеличении температуры, поэтому в данном примере не будем углубляться, просто объясним 1 фактор, почему шарики чаще улетают из раствора)
Если мы увеличим давление, это мало скажется на растворе, но весьма сильно увеличит давление газа над раствором (можно представить поршень, который вталкивает газ в раствор), чем больше давление газа над раствором, тем больше молекул у нас собралось у поверхности раствора, а значит, больше "желающих" попасть внутрь раствора и меньше желающих оный покинуть.
2. Реакция кислот с основными оксидами. Этот получения солей упоминался в параграфе 8-3. Фактически, это вариант реакции нейтрализации. Например: H2SO4 + CuO = CuSO4 + H2O
сульфат меди
3. Реакция оснований с кислотными оксидами (см. параграф 8.2). Это также вариант реакции нейтрализации: Ca(OH)2 + CO2 = CaCO3 + H2O
карбонат кальция
4. Реакция основных и кислотных оксидов между собой: CaO + SO3 = CaSO4
сульфат кальция
5. Реакция кислот с солями. Этот подходит, например, в том случае, если образуется нерастворимая соль, выпадающая в осадок: H2S + CuCl2 = CuS (осадок) + 2 HCl
сульфид меди
6. Реакция оснований с солями. Для таких реакций подходят только щелочи (растворимые основания) . В этих реакциях образуется другое основание и другая соль. Важно, чтобы новое основание не было щелочью и не могло реагировать с образовавшейся солью. Например: 3 NaOH + FeCl3 = Fe(OH)3 + 3 NaCl
(осадок) хлорид натрия
7. Реакция двух различных солей. Реакцию удается провести только в том случае, если хотя бы одна из образующихся солей нерастворима и выпадает в осадок: AgNO3 + KCl = AgCl (осадок) + KNO3
хлорид серебра нитрат калия
Выпавшую в осадок соль отфильтровывают, а оставшийся раствор упаривают и получают другую соль. Если же обе образующиеся соли хорошо растворимы в воде, то реакции не происходит: в растворе существуют лишь ионы, не взаимодействующие между собой:
NaCl + KBr = Na+ + Cl- + K+ + Br-
Если такой раствор упарить, то мы получим смесь солей NaCl, KBr, NaBr и KCl, но чистые соли в таких реакциях получить не удается.
8. Реакция металлов с кислотами. В мы имели дело с реакциями обмена (только реакция соединения. Но соли образуются и в окислительно-восстановительных реакциях. Например, металлы, расположенные левее водорода в ряду активности металлов (таблица 8-3), вытесняют из кислот водород и сами соединяются с ними, образуя соли: Fe + H2SO4(разб. ) = FeSO4 + H2
сульфат железа II
9. Реакция металлов с неметаллами. Эта реакция внешне напоминает горение. Металл "сгорает" в токе неметалла, образуя мельчайшие кристаллы соли, которые выглядят, как белый "дым": 2 K + Cl2 = 2 KCl
хлорид калия
10. Реакция металлов с солями. Более активные металлы, расположенные в ряду активности левее вытеснять менее активные (расположенные правее) металлы из их солей: Zn + CuSO4 = Cu + ZnSO4