М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlicaMinenkova
AlicaMinenkova
13.09.2022 16:42 •  Химия

Основные понятия термодинамики.энтальпия,энтропия,энергия гиббаса.закон гесса

👇
Ответ:
Элина2018
Элина2018
13.09.2022

Основные понятия термодинамики: система, экстенсивные параметры, интенсивные
параметры, процесс, работа, теплота, внутренняя энергия.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела). Объекты природы, не входящие в систему, называются средой.

Экстенсивные параметры – параметры, значения которых пропорциональны числу частиц в системе (масса, объем, количество вещества)

Интенсивные параметры – параметры, значения которых не зависят от числа частиц в системе (температура, давление, концентрация).

Процесс – переход системы из одного состояния в другое, сопровождающийся необратимым или обратимым изменением хотя бы одного параметра, характеризующего данную систему.

Работа – энергетическая мера направленных форм движения частиц в процессе взаимодействия системы с окружающей средой.

Теплота – энергетическая мера хаотических форм движения частиц в процессе взаимодействия системы с окружающей средой.

Внутренняя энергия – полная энергия системы, которая равна сумме потенциальной и кинетической энергии всех частиц этой системы, в том числе на молекулярном, атомном и субатомном уровнях.

Классификация термодинамических систем.

Изолированная система – характеризуется отсутствием обмена энергией и веществом с окружающей средой.

Закрытая система обменивается с окружающей средой энергией, а обмен веществом исключен.

Открытая система обменивается с окружающей средой энергией и веществом (информацией).

1 и 2 начало (закон) термодинамики.

1 начало термодинамики.

1)     

В изолированной системе внутренняя энергия постоянна, т.е. ∆U=0

2)     

Если к закрытой системе подвести теплоту Q, то эта теплота расходуется на увеличение внутренней энергии системы ∆U и на совершение системой работы против внешних сил окружающей среды: Q=∆U+A.

2 начало термодинамики.

1)     

В изолированных системах самопроизвольно могут совершаться только такие необратимые процессы, при которых энтропия системы возрастает, т.е. ∆S>0.

2)     

Невозможен вечный двигатель второго рода.

3)     

Невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах. (Р. Клазиус)

Закон Гесса и три его следствия.

Закон Гесса. Энтальпия реакции, т.е. тепловой эффект реакции, зависит только от природы и состояния исходных веществ и конечных продуктов и не зависит от пути, по которому протекает реакция.

1 следствие. Энтальпия реакции равна разности алгебраической суммы энтальпий образования всех продуктов реакции и алгебраической сумме энтальпий образования всех исходных веществ.

2 следствие. Энтальпия прямой реакции численно равна энтальпии обратной реакции, но с противоположным знаком.

3 следствие. Энтальпия реакции равна разности алгебраической суммы энтальпий сгорания всех продуктов реакции и алгебраической сумме энтальпий сгорания всех исходных веществ.

Эндо- и экзотермические процессы.

Эндотермические процессы сопровождаются поглощением энергии системой из окружающей среды.

Экзотермические процессы сопровождаются выделением энергии из системы в окружающую среду.

Стандартная энтальпия образования простых и сложных веществ
Стандартная энтальпия образования простых веществ в их наиболее термодинамически устойчивом агрегатном и аллотропном состоянии при стандартных условиях принимается равной нулю.

Стандартная энтальпия образования сложного вещества равна энтальпии реакции получения 1 моль этого вещества из простых веществ при стандартных условиях.

Определение понятия «калорийность питательных веществ».

Калорийность питательных веществ – энергия, выделяемая при полном окислении (сгорании) 1 г питательных веществ.

Понятия энтропии, энергии Гиббса.

Энтропия – термодинамическая функция, характеризующая меру неупорядоченности системы (т.е. неоднородности расположения и движения ее частиц).

Энергия Гиббса – обобщенная термодинамическая функция состояния системы, учитывающая энергетику и неупорядоченность системы при изобарно-изотермических условиях. G=H-TS.

Критерий самопроизвольного течения химического процесса.

Самопроизвольным, или спонтанным, является процесс, который совершается в системе без затраты энергии извне и который уменьшает работо системы после своего завершения. Система стремится к минимуму энергии за счет выделения энергии в окружающую среду.


4,5(64 оценок)
Открыть все ответы
Ответ:
gimirunb
gimirunb
13.09.2022
Пусть исходно было 1 моль СН4.
Запишем уравнение реакции:
             2CH4 =   C2H2 +    3H2  Запишем изменения количества веществ:
Было:   1моль      0 моль  0 моль
Стало  1 - 2х моль  х моль  3х моль
Общее количество веществ в полученной смеси: 1 - 2х + х + 3х = 1 + 2х моль
Количество вещества пропорционально объему (а отсюда и объемной доле), поэтому запишем теперь объемную долю ацетилена через количество вещества:
φ (С2Н2): х/(1+2х) = 0,21 (по условию). Откуда х=0,362 моль
Значит, в реакцию вступило метана 2х = 0,724 моль.
Поэтому степень превращения метана составит: 0,724/1 = 0,724 (или 72,4%)
ответ: 72,4%
4,4(95 оценок)
Ответ:
tatianabeklemia
tatianabeklemia
13.09.2022
Дано:
V(p-pa FeSO4) = 1 дм³ = 1 л = 1000 мл
ω(FeSO4) = 10% = 0.1
ρ(p-pa FeSO4) = 1,07 г/мл
V(p-pa KOH) = 400 мл
ω(KOH) = 5% = 0.05
ρ(KOH) = 1,05 г/мл
ω(NaOH) = 18%= 0,18
ρ(p-pa NaOH) = 1,2 г/мл
Найти:
V(p-pa NaOH) - ?

Решение.
m(p-pa FeSO4) = V(p-pa FeSO4)*ρ(p-pa FeSO4)
m(p-pa FeSO4) = 1000 мл*1,07 г/мл = 1070 г
m(FeSO4) = m(p-pa FeSO4)*ω(FeSO4)
m(FeSO4) = 1070 г*0,1 = 107 г
M(FeSO4) = 152 г/моль
n(FeSO4) = 107 г/152 г/моль = 0,70395 моль
m(p-pa KOH) = 400 мл*1,05 г/мл = 420 г
m(KOH) = 420 г *0,05 = 21 г
M(KOH) = 56 г/моль
n(KOH) = 21 г/56 г/моль = 0,375 моль
Составляем уравнение реакции и определяем к-во сульфата железа, которое вступило в реакцию:
FeSO4 + 2KOH = Fe(OH)2 + K2SO4
Из уравнения реакции следует, что
n'(FeSO4) = 0,5n(KOH)=0,5*0,375=0,1875 моль
Не прореагировало: n"(FeSO4) = 0,70395 моль-0,1875 = 0,51645 моль
Составляем уравнение реакции и определяем к-во гидроксида натрия:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4
n(NaOH) = 2n"(FeSO4) = 2*0,51645 моль = 1,0329 моль
M(NaOH) = 40 г/моль
m(NaOH) = 1.0329 моль*40 г/моль = 41,316 г
m(p-pa NaOH) = 41,316 г/0,18=229,53 г
V(p-pa NaOH) = 229,53 г/1,2 г/мл = 191,28 мл
ответ: 191,28 мл
4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Химия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ