Жиры, или триглицериды - природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов.
Наряду с углеводами и белками, жиры - один из главных компонентов клеток животных, растений и микроорганизмов. Жидкие жиры растительного происхождения обычно называют маслами - так же, как и сливочное масло.
Свойства жиров
Энергетическая ценность жира приблизительно равна 9,1 ккал на грамм, что соответствует 38 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза массой 3900 кг на высоту 1 метр. Молекулы жира обладают большей энергоемкостью по сравнению с углеводами. Так, при сгорании (окислении) 1 г. жира до конечных продуктов - воды и углекислого газа выделяется в 2 раза больше энергии, чем при окислении того же количества углеводов.
Жиры являются аккумуляторами энергии, но сгорают они в пламени углеводов. Иными словами, чтобы жиры освободили энергию, необходимо достаточное количество углеводов и кислорода. При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии. Природной эмульсией жира в воде является молоко. Классификация жиров Природные жиры содержат следующие жирные кислоты: Насыщенные: стеариновая (C17H35COOH) пальмитиновая (C15H31COOH) Ненасыщенные: пальмитолеиновая (C15H29COOH, 1 двойная связь) олеиновая (C17H33COOH, 1 двойная связь) линолевая (C17H31COOH, 2 двойные связи) линоленовая (C17H29COOH, 3 двойные связи) арахидоновая (C19H31COOH, 4 двойные связи, реже встречается)
Пищевые свойства жиров
Жиры являются одним из основных источников энергии для млекопитающих. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей желчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом. Жиры выполняют важные структурные функции в составе мембранных образований клетки, в субклеточных органеллах. Благодаря крайне низкой теплопроводности жир, откладываемый в подкожной жировой клетчатке, служит термоизолятором, предохраняющим организм от потери тепла (у китов, тюленей и др.). Жиры участвуют в большинстве процессов жизнедеятельности клеток и, в частности тому, чтобы кожа была эластичной и имела здоровый вид. Клетки мозга состоят из жира более чем на 60 %, и недостаток поступающего в организм жира сказывается на его работе не лучшим образом.
Функции жиров в организме: Энергетическая.
Энергетическая ценность жира составляет около 9,1 ккал на грамм, что позволяет считать жиры лучшим источником энергии для организма. По этой причине жиры депонируются в организме в виде жировых отложений для создания запасов энергии. Защитная. Жировая ткань, обволакивая все хрупкие органы человека, фактически защищает их от механических сотрясений и травм, смягчая и амортизируя результаты внешних воздействий. Теплоизолирующая. Благодаря крайне низкой теплопроводности, жиры – прекрасный изолятор, сохраняющий тепло тела и защищающий его от переохлаждения. Посмотрите на тюленей, китов или любое другое животное крайнего Севера, их тела защищены от холодных температур толстой прослойкой жира. А набранные вами за зиму 2-3 кг - это защитная реакция организма на отрицательные температуры. Кроме этих функций, жиры тому, чтобы кожа была эластичной и имела здоровый красивый вид входят в состав клеток мозга человека (мозг более чем на 60% состоит из жиров) являются структурным компонентом элементов клетки (мембраны, ядра и цитоплазмы) и субклеточных органелл влияют на усвоение необходимых для жизнедеятельности организма жирорастворимых витаминов обеспечивают всасывание из кишечника ряда минеральных веществ нормализируют работу репродуктивной функции влияют на процессы роста и развития организма Ряд фактов о пользе жиров: За счет окисления жиров образуется 50% всей энергии в организме.
ОБЩИЕ СВЕДЕНИЯ О ГОРЕНИИ И ВЗРЫВЕ
1.1. ХИМИЧЕСКАЯ И ФИЗИЧЕСКАЯ ПРИРОДА ГОРЕНИЯ
Горение является основным процессом на пожаре. Пожар начинается с возникновения горения и заканчивается его прекращением. Что лежит
в основе процесса горения, какими характерными особенностями оно обладает?
По-видимому, самым общим определением процесса горения может
быть следующее. Горение – это сложный физико-химический процесс, в
основе которого лежит быстрая химическая реакция, протекающая с выделением большого количества тепла и света.
Какие же химические реакции лежат в основе процесса горения?
Самыми рас реакциями горения являются реакции взаимодействия веществ с кислородом. Например, при горении водорода происходит реакция
Н2 + 0,5 О2 → Н2О
при горении метана –
СН4 + 2 О2 → СО2 + 2 Н2О
при горении ацетона –
С3Н6О + 4 О2 → 3 СО2 + 3 Н2О
Эти реакции относят к классу реакций окисления. Окислителем в
этих реакциях является кислород, а окисляемое в реакции горения вещество называют горючим. Горючими веществами в приведенных примерах
являются водород, метан, ацетон.
Реакции горения протекают при высоких температурах (Т > 1000 К),
поэтому они происходят быстро и до конца (т. е. до полного окисления
горючего вещества). При горении в основном образуются продукты полного окисления: для углерода – это СО2, для водорода – Н2О, для серы –
SО2 и т. д.
При невысоких температурах (Т ≈ 500–700 К) между горючим веществом и кислородом может происходить медленная реакция – окисление.
Например, метан окисляется до метилового спирта (СН3ОН), который в
дальнейшем может окисляться до альдегида (СН2О), а альдегид до муравьиной кислоты (НСООН). Все эти реакции экзотермические (происходят с
выделением тепла). Однако скорость выделения тепла в такой реагирующей
7
смеси недостаточна для поддержания температуры реакции (500–700 К).
Поэтому для того, чтобы в такой системе происходило окисление, реагирующую смесь необходимо подогревать, т. е. сообщать ей дополнительное
количество тепла. Если этого не сделать, то температура реагирующей
смеси вследствие теплопотерь понизится до температуры окружающей
среды (∼300 К) и реакция окисления прекратится. Если же эту систему
(смесь метана с кислородом) нагреть до очень высокой температуры
(>1000 К), то в ней возникнет качественно другая реакция окисления – реакция горения, которая протекает с большой скоростью, окисление идет
сразу до конца (образуются продукты полного окисления), поэтому выделяется максимальное количество тепла, и скорость тепловыделения обеспечивает поддержание в системе высокой температуры. В этом случае реакционную смесь больше подогревать не нужно, собственного тепла достаточно для нагревания этой системы до температуры, при которой происходит химическая реакция горения.
Таким образом, реакция горения, однажды возникнув, в дальнейшем сама себя поддерживать. Именно это является отличительной особенностью реакций горения. Пламя, являющееся зоной химических реакций
горения, будет существовать до тех пор, пока обеспечивается поступление в
эту зону свежих порций горючего и окислителя. С этим связана и пламени самопроизвольно рас по горючей смеси.
Горение веществ может происходить не только при их взаимодействии с кислородом, но и при взаимодействии с другими окислителями,
такими, как хлор, фтор, окислы азота.
Например, водород и многие углеводороды хорошо горят в атмосфере хлора. При горении водорода происходит реакция образования хлористого водорода:
Н2 + Cl2 → 2 HСl
Горение в хлоре сопровождается меньшим тепловыделением и происходит с меньшей скоростью, чем в кислороде.
Реже, но встречается и такое горение, при котором имеет место превращение только одного вещества. Примером тому может служить взрывное разложение ацетилена:
СН ≡ СН → 2 С (сажа) + Н2
К такому же типу реакций можно отнести горение пороха и некоторых твердых ракетных топлив.
Специалистам, работающим в области пожарной безопасности, приходится в основном иметь дело с горением в атмосфере воздуха, где окис
Объяснение:
8/40*2=x/1280 составляем и решаем пропорцию
x=256кДж и делим на 2=128 кДЖ