ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.
Прежде всего следует подчеркнуть, что в практическом смысле чистота вещества понятие относительное, зависящее от назначения вещества. Так, в быту называют чистой обычную воду и уж, во всяком случае, относят к этой категории дистиллированную воду, поскольку в многочисленных случаях ее использования такая вода ведет себя как химический индивидуум.
На самом деле дистиллированная вода далеко не является чистым веществом, она содержит растворенные газы, пылинки и в небольших количествах соли и кремневую кислоту, извлеченные из стекла. Такая вода не только не может служить эталоном чистоты, но даже не может быть использована во многих ответственных работах (определение электропроводности, получение полупроводниковых материалов и т. д.).
Часто дается определение чистого вещества как физически и химически однородного материала, обладающего определенным комплексом постоянных свойств и не изменяющегося при дальнейшей очистке его самыми совершенными средствами. Однако такое определение далеко не безупречно, и оценка чистоты в сильной степени зависит от уровня развития техники.
Содержание примесей в препаратах особой чистоты измеряется миллионными и миллиардными долями процента и с точки зрения практического использования такие препараты можно считать вполне чистыми. В самом деле: что значит примесь 3*10-8 %? Это значит, что один атом примеси приходится на 30 миллиардов атомов вещества. Казалось бы, что мы близки к идеальной чистоте. Но простой расчет показывает, что, например, 1 мм3 германия такой чистоты содержит еще 16 миллиардов атомов примесей.
Любая работа с веществами столь высокой чистоты требует исключительной аккуратности и самых тщательных предосторожностей против возможного загрязнения препарата. Малейший недосмотр приводит к резкому понижению чистоты препарата. Если, например, растереть препарат в агатовой ступке, содержание Cu увеличивается с 6*10-8 до 1*10-7 %, т. е. в 2 раза.
Достаточно проводить анализ чистейшей НNО3 или НСl на открытом воздухе (а не в боксе со специально очищенным воздухом), как содержание Са, Mg, Fe, Ni, Рb и других примесей возрастает на целый порядок.
Следует отметить, что труднее всего проводить очистку вещества от "обычных" загрязнений, как перечисленные выше. Это объясняется тем, что имеется очень много источников загрязнения кальцием, магнием, железом и подобными примесями.
Лабораторная посуда, вода, пыль, находящаяся в воздухе и на спецодежде, - все это создает возможность попадания ничтожных загрязнений в очищаемый препарат. Даже использование экспериментатором косметических средств (пудра, губная помада) может привести к снижению качества препарата высокой чистоты из-за загрязнения его цинком, магнием и др.
Чем меньше допустимое количество примесей в очищаемом веществе, тем сложнее удаление этих примесей и тем больше вероятность загрязнения. В этом и кроется трудность получения веществ предельной чистоты. Когда мы подходим к удалению последних "следов" загрязнений, то сталкиваемся с удивительным фактом: чем чище становится вещество, тем сильнее меняются его свойства. Известно, что полупроводниковые свойства германия проявляются только в том случае, если содержание примесей становится меньше 10-7 %.
В меньшей мере известен тот факт, что тщательное высушивание веществ, т. е. удаление последних следов сорбированной воды, приводит к резкому изменению физико-химических констант. Когда метиловый спирт высушили оксидом фосфора(V) в течение 9 лет, то температура кипения спирта вместо 66 оказалась 120 °С.
Аналогичная сушка была проведена с таким хорошо изученным веществом, как металлическая ртуть, при этом температура кипения ртути с 358 поднялась до 425 °С.
Но достаточно было этим препаратам на мгновение соприкоснуться с влажным воздухом, как их температура кипения вернулась к обычному значению.
Следовательно, если бы удалось найти