Одним из главных препятствий, стоявших в начале нашего века на пути решения проблемы возникновения жизни, было господствовавшее тогда в науке и основанное на повседневном опыте убеждение в том, что органические вещества в природных условиях возникают только биогенно, то есть путем их синтеза живыми существами. Считалось, что представить себе естественное возникновение даже простейших организмов из неорганических веществ (углекислоты, воды, азота и т.д.) совершенно невозможно. Поэтому так важно было появление концепции А.И. Опарина, вступившей в противоречие с общепринятым тогда мнением. Он выступил с утверждением, что монополия биотического синтеза органических веществ характерна лишь для современной эпохи существования нашей планеты. В начале же своего существования, когда Земля была безжизненной, на ней осуществлялись абиотические синтезы углеродистых соединений и их последующая предбиологическая эволюция. Совершалось постепенное усложнение этих соединений, формирование из них индивидуальных фазовообособленных систем, превращение их в протобионты, а затем и в первичные живые существа.
Книга Опарина «Происхождение жизни» была опубликована еще в 1924 г., хотя пик исследований опаринской школы приходится на 50–60-е годы. Появление жизни он стал рассматривать как единый естественный процесс, который состоял из протекавшей в условиях ранней Земли первоначальной химической эволюции, перешедшей постепенно на качественно новый уровень – биохимическую эволюцию. По его мнению, этот процесс с самого начала был неразрывно связан с геологической эволюцией Земли. Поэтому Опарин предположил и экспериментально доказал, что под действием электрических разрядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, циана, метана и др., появились аминокислоты, нуклеотиды и их полимеры, которые по мере увеличения концентрации органических веществ в «первичном бульоне» гидросферы Земли возникновению коллоидных систем, так называемых коацерватных капель.
Согласно гипотезе Опарина, возникновение и развитие химической эволюции произошло в ходе образования и накопления в первичных водоемах исходных органических молекул. Весь дальнейший процесс ему представлялся следующим образом. Органические вещества сталкивались в сравнительно неглубоких местах первичных водоемов, прогреваемых Солнцем. Солнечное излучение доносило в то время до поверхности Земли ультрафиолетовые лучи, которые в наше время сдерживаются озоновым слоем атмосферы. В свою очередь ультрафиолетовые лучи обеспечивали энергией протекание химических реакций между органическими соединениями. Таким образом, в некоторых зонах первичных водоемов протекали случайные химические реакции. Большая их часть быстро завершилась из-за недостатка исходного сырья. Но в хаосе химических реакций произвольно возникали и закреплялись реакции циклических типов, обладавшие к самоподдержанию. Результатом этих реакций и стали коацерваты – пространственно обособившиеся целостные системы. Существенной их особенностью была поглощать из внешней среды различные органические вещества, что обеспечивало возможность первичного обмена веществ со средой. А уже функционировавший «естественный отбор выживанию» наиболее устойчивых коацерватных систем. Иными словами, первичная клеточная структура, описанная Опариным, представляла собой открытую химическую микроструктуру и уже была наделена к первичному метаболизму (обмену веществ), хотя еще не имела системы для передачи генетической информации на основе функционирования нуклеиновых кислот.
В ходе развивавшегося «естественного отбора» возникли важнейшие свойства жизни, отличающие ее от предыдущего этапа развития. Возникшие целостные многомолекулярные системы, фазовообособленные от окружающей среды определенной границей раздела, сохраняют с ней взаимодействие по типу открытых систем. Только такие системы, черпающие из внешней среды вещества и энергию, могут противостоять нарастанию энтропии и даже ее уменьшению в процессе своего роста и развития, что является характерным признаком всех живых существ.
Последствия кислотных дождей
В осадках - множество химических соединений, в частности, кислоты. Иногда с дождем и снегом выпадает вся таблица Менделеева, с сульфитами и нитратами.
Рыжие и черные пятна на плодах, пожелтевшие посреди лета листья - это последствия дождей. С неба льется не дистиллированная вода, а то, что было испарено. Впрочем, кое-где "цветные дожди" - это следствие цветения, в частности, весной.
Кислотные дожди разъедают даже металл, в результате чего быстрее разрушаются мосты, ломаются самолеты. Многие исторические памятники, которые существуют уже тысячелетия и сохранились до наших дней, могут сейчас погибнуть из-за кислотных дождей
Окиси серы и азота, которые выбрасываются в атмосферу вследствие работы тепловых электростанций и автомобильных двигателей, соединяются с атмосферной влагой и образуют мелкие капельки серной и азотной кислот, которые переносятся ветрами в виде кислотного тумана и выпадают на землю кислотными дождями. Эти дожди крайне вредно действуют на окружающую среду:
· снижается урожайность большинства с/х культур вследствие повреждения листвы кислотами;
· вымывается из грунта кальций, калий, магний, который вызывает деградацию фауны и флоры;
· гибнут леса
· отравляется вода озер и прудов, где гибнет рыба, исчезают насекомые;
· исчезают водоплавающие птицы и животные, которые питаются насекомыми;
· гибнут леса в горных районах, что вызывает селевые потоки;
· ускоряется разрушение памятников архитектуры и жилищных зданий;
· увеличивается количество заболеваний людей;
· защита атмосферы.
Защита атмосферы включает комплекс технических и административных мер, прямо или косвенно направленных на прекращение или по крайней мере уменьшение возрастающего загрязнения атмосферы, являющегося следствием промышленного развития.
Территориально-технологические проблемы включают как вопросы местоположения источников загрязнения атмосферы, так и ограничения или устранения ряда отрицательных эффектов. Поиск оптимальных решений по ограничению загрязнения атмосферы данным источником интенсифицировался параллельно с ростом уровня технических знаний и промышленным развитием, – разработан ряд специальных мер по защите атмосферы. Кроме того, начинается интегрирование процесса поиска оптимальных решений по ограничению эффектов загрязнения атмосферы с комплексным подходом к защите атмосферы, которое и рассматривает взаимосвязи между отдельными составляющими окружающей среды. Таким образом, исследование эффектов загрязнения атмосферы становится все более зависимой, но не менее важной частью в области защиты атмосферы.
Придание исследованиям по защите атмосферы целенаправленного характера должно включать борьбу против ее загрязнения, особенно промышленного, а также от транспортных средств и других источников. Они не могут проводиться, например, только ради постановки задач, но должны указывать пути улучшения существующего положения. Таким образом, эта область исследований не может пассивно комментировать сложившуюся ситуацию и делать прогнозы, основывающиеся на данных самих «поставщиков загрязнений», она должна разрабатывать концепции, промежуточные и долговременные планы, а также конкретные программы, направленные на активное ограничение неблагоприятного хода событий, используя при этом локальную кратковременную тактику и долговременную общенациональную стратегию.