Объяснение:
1. Какие органические соединения называют органическими основаниями
2, Чем можно объяснить амфотерность аминокислот?
Слово "амфотерность" в переводе означает и с тем и с другим.
Амфотерные вещества обладают свойствами и кислоты и основания. Аминокислоты содержат противоположные по свойствам функциональные группы. Аминогруппы (- NH2) придают аминокислотам основные свойства, а карбоксильные групп - СООН - кислотные свойства.
3. Какие общие свойства есть у аминов и аминокислот. У тех и у других есть в составе аминогруппы. Но основные свойства у аминокислот проявляются мягче, а у аминов они проявляются значительно резче.
4. Амфотерность белков проявляется в в том, что входящие в состав белка функциональные группы аминокислот в разной среде диссоциируют по разному: одни как кислотные, другие как основные и отдельные участки белковой молекулы, могут приобретать в зависимости от среды определенные по-разному заряженные участки.
Какие аминокислоты входят в состав белков . Считается что в состав белков входит 20 важнейших аминокислот. По свойства и составу эти аминокислоты заметно различаются
В зависимости от числа карбоксильных групп и аминогрупп в молекуле
выделяют:
• нейтральные аминокислоты - по одной группе NH2 и СООН;
• основные аминокислоты - две группы NH2 и одна группа СООН;
• кислые аминокислоты - одна группа NH2 и две группы СООН.
Можно отметить, что в группе алифатических нейтральных аминокислот
число атомов углерода в цепи не бывает больше шести.
При этом не существует аминокислоты с четырьмя атомами углерода в цепи,
а аминокислоты с пятью и шестью атомами углерода имеют только
разветвленное строение (валин, лейцин, изолейцин).
В алифатическом радикале могут содержаться «дополнительные»
функциональные группы:
• гидроксильная ( -ОН) - серин, треонин;
• карбоксильная ( -СООН) - аспарагиновая и глутаминовая кислоты;
• тиольная ( -SH) - цистеин;
• амидная (-NH2) - аспарагин, глутамин.
Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты
равны, называется изоэлектрической точкой.
6. Различают обратимую и необратимую денатурацию.
При обратимой денатурации после снятия действия денатурирующего агента, структура белка восстанавливается. Но такое случается не часто. Обычно при действии на белок высоких и низких температур, ядов, излучения происходит необратимая денатурация белков и как следствие - гибель организма.
Объяснение:
1) Х г 190 г
2Na + 2H2O = 2NaOH + H2
n=2 моль n=2 моль
М = 23 г/моль М = 18 г/моль
m=46 г m=36 г
Х г Na - 190 г Н2О
46 г Na - 36 г Н2О
m(Na) = 46 * 190 / 36 =243 г
10 л Х г
2) N2O5 + H2O = 2HNO3
n=1 моль n=2 моль
Vm=22,4 л/моль М = 63 г/моль
V = 22,4 л m=126 г
10 л N2O5 - Х г HNO3
22,4 л N2O5 - 126 г HNO3
m(HNO3) = 10 * 126 / 22,4 = 56,25 г
Запишем уравнение реакции образования ортофосфорной кислоты: P2O5 + 3 H2O = 2 H3PO4. При образовании кислоты также расходуется вода. Молярная масса воды М (Н2О) = 18г/моль, М (H3PO4) = 98г/моль. Таким образом при реакции 1г воды образуется 3,63г кислоты (см. уравнение) . Теперь можно записать уравнение для получения новой концентрации: w1 = (mв+х) / [(mв+х) + (mр-у)] , где w1 - новая концентрация (0,5), х - масса кислоты, которую нужно прибавить к существующему раствору, у - количество воды, которое расходуется при этом. Но кислоты образуется в 3,63 раза больше (по массе) , чем расходуется воды т. е. х = 3,63у. Поэтому можно записать: w1 = (mв+3,63у) / [(mв+3,63у) + (mр-у)] , отсюда находим у = [w1*(mв + mр) - mв] /(3.63 - 2.63*w1), у = 48,596г (воды расходуется) , соответственно 337,5-48,596=288,9г воды осталось в растворе. Масса кислоты, образовавшаяся при этом 3,63 * 48,596 = 176,4г.
Проверка: mв = 176,4 + 112,5 = 288,9г, mр = 288,9г, новая концентрация: w1 = 288,9/(288,9+288,9) = 0,5.
Определим необходимое количество оксида фосфора для образования кислоты. Мы уже знаем, что требуется 48,596г воды для реакции. Отсюда не трудно определить массу оксида (см. уравнение) . Молярная масса его М (P2O5) = 2*30,9 + 5*16 = 141,8г/моль. Таким образом при реакции 1 моль (141,8г) оксида расходуется 3 моль (54г) воды а при реакции х г оксида расходуется 48,596г воды. х = 127,6г оксида прореагирует. Требуется 127,6г оксида фосфора.
Реакция окисления фосфора: 4Р + 5О2 = 2Р2О5. Молярная масса фосфора М (Р) = 30,9г/моль. Таким образом для того, чтобы образовалось 2 моль (283,6г) оксида требуется 4 моль (123,6г) фосфора, а для образования 127,6г оксида - х. Находим х = 55,6г фосфора нужно сжечь.