а)
2H3C-CH-CH3 + 2Na → 2H3C-CH-CH3 + H2↑
| |
OH ONa
б)
OH Cl
| |
H3C-C-CH2-CH3 + HCl → (H2SO4конц.) H3C-C-CH2-CH3 + H2O
| |
CH3 CH3
OH Cl
| |
H3C-C-CH2-CH3 + HCl (изб.)→ H3C-C-CH2-CH3 + H2O
| |
CH3 CH3
в)
2H3C-OH + 2K → 2CH3-OK + H2↑
г)
CH2-OH + 2HBr → (H2SO4конц.) Br-CH2-CH2-Br + 2H2O
|
CH2-OH
CH2-OH + 2HBr (изб.)→ Br-CH2-CH2-Br + 2H2O
|
CH2-OH
Объяснение:
В твердому стані більшість солей утворюють іонні кристали, у вузлах кристалічної ґратки яких знаходяться катіони та аніони. В рідкому (розплавленому) стані солі більшості сильних кислот і основ перебувають у рівновазі між іонною дисоційованою формою та недисоційованою молекулярною. Чим сильнішою є кислота та основа, що утворили сіль, тим більше така рівновага зміщена в сторону іонної форми.Більшість солей є іонними сполуками і використання структурних формул для них є некоректним, оскільки хибно передає будову речовини. Тим не менше, у навчальних цілях інколи умовно зображають структурні формули солей з ковалентними зв'язками між атомами. В таких випадках виходять з формул відповідних кислот або основ, заміняючи в них кислотні атоми Гідрогену на атоми металу або гідроксильні групи основ на кислотні залишки. Для прикладу наведемо структурні формули фосфату кальцію, гідрокарбонату барію і основного карбонату міді:
Объяснение:
Например, CuCl2 диссоциирует следующим образом: CuCl2=Cu(2+)+2CL(-)