Всю работу примем за 1.
Пусть две бригады, работая вместе, выполнят работу за х дней. Тогда
за х+9 дней выполнит работу 1-я бригада, работая отдельно, а за х+4 дня - 2-я бригада.
1 (/х+9) - производительность труда 1-ой бригады, 1/(х+4) - произв. 2-ой бригады, 1/х - производительность двух бригад.
1/(х+9) + 1/(х+4) = 1/х, х больше 0.
Умножим обе части уравнения на общий знаменатель х(х+9)(х+4)
х^2 + 4x+x^2+9x-x^2 - 4x - 9x - 36 = 0
x^2 - 36 = 0
x=6 и x=-6
Т.к. х больше 0, то х=6
6+9=15. ответ: за 15 дней.
Пошаговое объяснение:
(x+5)^3 > 8 .Можем извлечь из 3 степени ,т.к. степень нечетная и знак не поменяет ,тогда x+5 > 2 , x > -3
ответ : x∈ (-3;+∞)
2) (3x - 5 ) ^ 7 < 1. Можем извлечь из 7 степени ,т.к. степень нечетная и знак не поменяет ,тогда 3x- 5 < 1 ; 3x < 6 ; x<2
ответ : x∈ (-∞;2)
3) (4 - x)^4 > 81 . т.к. степень четная ,то при извлечении из 4 степени ,нужно добавить модуль ,т.е. |4-x| > 3 . Разобьем на две системы неравенств :
.Решение первого неравенства (-∞;1) ,а второго (7;+∞) . Объединяя получаем ,что x∈(-∞;1) V (7;+∞)
ответ: x∈(-∞;1) V (7;+∞)
ответ:
все готово удачі там тобі постав як найкращу відповідь будь