М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DDDDBB
DDDDBB
16.01.2023 21:53 •  Математика

Сколько будет 1) 43,52+47,3-60,8-100,05
2) -31,6+11,08-31,04+82,64 только полное решение а не только ответ

👇
Ответ:

1) 43,52+47,3-60,8-100,05=90,82-160,85=-70,03 2) -31,6+11,08-31,04+82,64=-62,64+93,72=31,08

4,7(32 оценок)
Ответ:
ilia62002
ilia62002
16.01.2023

ответ:1)-70,03 2)31,08

Пошаговое объяснение:43,52+47,3-60,8-100,05=90,82-160,85=-70,03

-31,6+11,08-31,04+82,64=-62,64+93,72=31,08

4,6(41 оценок)
Открыть все ответы
Ответ:
saraarakelyan1
saraarakelyan1
16.01.2023
Эту логическую задачу можно разрешить двумя
1) Первый заключается в последовательном предположении о количестве честных и нечестных гномов и последующей проверке логикой каждого нашего предположения; для начала допустим, что все двенадцать гномов лгуны, проверяем логику — первый гном, заявив «здесь нет ни одного честного гнома», сказал правду, значит, не выполняется наше первоначальное «все двенадцать лгуны»; для варианта «один гном честен» логика опять нарушена, ведь тогда выходит, что 2-ой, 3-ий, 4-ый и далее до 12-го гнома сказали правду, а мы предположили, что такой только один. Нетрудно убедиться, что применяя такой же алгоритм далее (последовательно предполагая, что 2-е, 3-е, 4-ро, 5-ро, 6-ро, 7-ро, 8-ро, 9-ро, 10-ро, 11-ро, 12-ро гномов говорят правду) мы почти во всех случаях получим сбой логики, исключение же составит только случай, когда правдивых гномов шестеро, ведь именно для этого варианта логика соблюдается: только седьмой, восьмой, девятый и далее до двенадцатого гномов не грешат против правды. Таким образом мы приходим к выводу, что на самом деле на полянке собралось шестеро честных и шестеро нечестных гномов.
2) Второй весьма близок к «эвристическому методу» - мы допускаем (помня про 50-ти процентную вероятность выпадения «орла» и «решки» при бросании монеты), что первые шесть гномов врут, а оставшиеся шесть — говорят правду. Проверяя такое предположение, приходим к выводу: если бы врущих было пять или меньше пяти, то правду сказали бы по крайней мере семь гномов – с шестого по двенадцатый, что не отвечает логике, а если бы говорящих правду гномов было семь или больше, то тогда выходит, что первые семь гномов солгали, то есть лжецов по крайней мере семь, но два раза по семь больше двенадцати, следовательно, наше первичное предположение: 6+6 — верно.
4,5(35 оценок)
Ответ:
fredkalash
fredkalash
16.01.2023
   Наибольшее ТРЕХЗНАЧНОЕ число 999, но выражение 327+999=1326, что не кратно 10. Кратные 10 числа оканчиваются на 0, т.е. сумма двух цифр разряда единиц в слагаемых должна быть равна 10. П первом слагаемом это 7, а во втором пусть будет А.(т.е. представим  трехзначное число у как 99А, где А - цифра разряда единиц) тогда  по условию:
7 + А= 10;  А=10 - 7 = 3. И наше число 993
Проверка:
327 + 993 = 1320;  1320 : 10 = 132. Условие кратности выполнено.
и число 993  - максимальное, так как при других значениях цифры А условие кратности не будет выполняться.
Подробное решение:
      Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам:  99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда.
      По условию:  327 + (900 + 90 + А) = 10*х; ⇒ 1317  + А = 10*х; ⇒
А = 10*х -1317;
      Поскольку А - это цифра, то:
 0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒  1317 ≤ 10*х ≤ 1326;  131,7 ≤ х ≤ 132, 6
     Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132;
     Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993
ответ: у = 993
4,4(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ