При условии, что числа повторно использовать нельзя:
Четные числа будут заканчиваться либо на 0, либо на 2, либо на 4, либо на 8
Количество чисел, которые заканчиваются на 0.
Первую цифру числа мы можем выбрать 4-мя вторую 3-мя так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:
4*3*2*1=24
Количество чисел, которые заканчиваются на 2
Первую цифру числа мы можем выбрать 3-мя так ноль не может быть ведущим, вторую цифру тоже 3-мя так добавился ноль, а одна цифра уже использована в первой позиции, для третьей позиции остается 2 числа, а для 4-ой всего одно. Тогда воспользуемся комбинаторным правилом умножения и получим:
3*3*2*1=18
Количество чисел, которые заканчиваются на 4
Аналогично, как считалось для чисел, заканчивающихся на 2
3*3*2*1=18
И так же для 8
3*3*2*1=18
24+18+18+18=78
Если повторно использовать можно:
Одну из цифр 2,3,4,8 можно поставить на первое место. 0,2,3,4,8 можно поставить на второе место. На третье и четвертое места можно поставить одну из неиспользованных цифр. На пятое можно поставить 0,2,4,8 Всего можно поставить - 4∙5∙5∙5∙4 = 2000 чисел.
Комбинаторная задача.
Формула число сочитаний n по к
C = n! / k!(n-k)!
n = 5 всегда
Группа содержит 1 машину (k=1), остальные в другой,
подставляем в формулу
С = 5!/1!*(5-1)! = 5
Группа содержит 2 машины (k=2), остальные в другой,
подставляем в формулу
С = 5!/2!*(5-2)! = 10
ну дальше не буду рассписывать, считаем С для 3 машины
С=5!/ 3! * 2!=10
считаем С для 4 машин
С=5!/ 4! * 1!=5
считаем С для 5 машин
С=5!/ 5! * 0!=1
считаем С для 0 машин
С=5!/ 0! * 5!=1
суммируем все С = 5+10+10+5+1+1 = 32
Держи спрашивала у учёного.