Комбинаторика: В приведенном наборе цифр 3 четные и 4 нечетные; если Ира пришла к выводу, что у Сергея четная сумма на 2-х взятых им карточках, значит, Ира взяла комбинацию из 3-х нечетных, и увидела, что на столе оставалась последняя четная карточка; какой комбинацией 4-х карточек данного набора можно получить сумму 21, чтобы быть уверенной в четности карточек Сергея? Оказывается, только одной (3+5+7)+(6)=21! Значит, после того как Сергей взял свои 2-е карточки, на столе оставались только карточки “1” и “6” (вот почему Ира была уверена, что Сергей взял “2” и “4”). Итак, вывод: во второй раз Ира взяла “6”.
1/2 3
По определению логарифма:
(1/2)^-1=log (x-46)
3
2=log ( x-46)
3
По определению логарифма:
3²=x-46
x-46=9
x=9+46
x=55
Проверка:
log log (x-46)=-1
1/2 3
log log ( 55-46)=-1
1/2 3
log log 3²=-1
1/2 3
log 2 =-1
1/2
log 2=-1
2^-1
-1log 2=-1
2
-1=-1
ответ:55
2)
log (4-5x)+1=log 2+log( 7-33,5x)
9 9 9
log ( 4-5x)+log 9= log 2( 7-33,5x)
9 9 9
log 9(4-5x)=log 2(7-33,5x)
9 9
По свойству логарифма: "Основания логарифмов равны, тогда равны и выражения, стоящие под знаком логарифмов"
9(4-5х)=2(7-33,5х)
36-45х=14-67х
-45х+67х=14-36
22х=-22
х= -22:22
х=-1
Проверка:
log (4-5·(-1))+1=log 2+log (7-33,5·(-1))
9 9 9
log 9 +1= log 2 + log 40,5
9 9 9
1+1=log 40,5·2
9
log 81=2
9
9²=81
81=81
ответ: -1