1} Найдем скалярное произведение векторов ВА ВС и АС Координаты точек A, B и C A (x a, y a) = (-6, 6)
B(x b, y b) = (18, -1)
C (x c, y c) = (0, 23)
ВА = ( 18+6,-1+6 ) = ( 24, 5)
ВС = ( 18- 0, -1-23) = ( 18, -24)
AC = {0+6,23-6}={6,17}
6} АМ=?
М ;х =[18+0}/2=9
y=-1-23/2=-12
вектор АМ[9+6;-12+18}={15;6]
3. IBAI = корень((-24)^2+7^2)=25;IBCI = корень((-18)^2+24^2)=30;IACI = корень(6^2+17^2)=5*корень(13);
(почти точно 18:), ну в самом деле, 18^2=324, АС^2 =325... к сожалению, треугольник не прямоугольный. Прямоугольным был бы треугольник со сторонами 18,24,30)
2.очевидное замечание АВ = -ВА, скобками обозначено скалярное произведение АВ и АС;
cosA=(AB,AC)/(IABI*IACI)==(24*6+(-7)*17)/(25*5*корень(13))=1/(5*корень(13));
между прочим sinA = 18/(5*корень(13));
cosB=(ВА,BC)/(IBAI*IBCI)=((-24)*(-18)+7*24)/(25*30)=4/5; sinB=3/5
cosC=(CА,CB)/(ICAI*IBCI)=((-6)*18+(-17)*(-24))/(30*5*корень(13))=2/корень(13);
sinC=3/корень(13);
4. Середины сторон проще всего находить, как полусумму координат вершин
D=((18+(-6))/2;(-1+6)/2)=(6;2,5);L=(9;11);T=(-3;14,5);
5. Если от точки С=(0;23) отложить 2 раза вектор (1/3)*СВ=(18/3;-24/3)=(6;-8)
то получим 2 нужные точки N=(0+6;23-8)=(6;15);K=(6+6;15-8)=(12;7);
6.Вектор АL - медиана, AL=(9-(-6);11-6)=(15;5); От точки А откладываем 2/3*AL, получаем координаты точки пересечения медиан
M=(-6+(2/3)*15;6+(2/3)*5)=(4;9+1/3)
1 т = 10 ц: 2 т - 8 ц = 2 * 10 - 8 = 20 - 8 = 12 ц = 1 т 2 ц
1 ч = 60 мин.: 2 ч - 8 мин. = 2 * 60 - 8 = 120 - 8 = 112 мин. = 1 ч 52 мин.
1 т = 1 000 кг: 450 кг + 900 кг = 1 350 кг = 1 т 350 кг
1 км = 1 000 м: 820 м + 600 м = 1 420 м = 1 км 420 м
1 мин. = 60 сек.: 2 мин. - 40 сек. = 2 * 60 - 40 = 120 - 40 = 80 сек. = 1 мин. 20 сек.
1 дм = 10 см: 5 дм - 8 см = 5 * 10 - 8 = 50 - 8 = 42 см = 4 дм 2 см
1 см² = 100 мм²: 46 мм² + 54 мм² = 100 мм² = 1 см²
1 дм² = 100 см²: 82 см² + 118 см² = 200 см² = 2 дм²
1 дм² = 100 см²: 4 дм² - 25 см² = 4 * 100 - 25 = 400 - 25 = 375 см² = 3 дм² 75 см²
1 м² = 100 дм²: 3 м² - 67 дм² = 3 * 100 - 67 = 300 - 67 = 233 дм² = 2 м² 33 дм²
Пошаговое объяснение:
Решение уравнением:
Пусть х кг масса бандероли, тогда масса посылки х+3,5 кг, (т.к. 3 кг 500 г = 3,5 кг). Три посылки имеют массу 3(х+3,5)=3х+10,5 кг, а две бандероли массу 2х кг и общая масса 14,5 кг (т.к. 14 кг 500 г =14,5 кг). Составим уравнение:
3х+10,5+2х=14,5
5х=4
х=0,8 (кг) = 800 (г) масса бандероли.
ответ: 800 грамм.
Решение по действиям (для 1-4 класса):
14 кг 500 г = 14500 г. ; 3 кг 500 г =3500 г. (т.к. в 1 кг 1000 г)
3500*3=10500 (г) На 10500 грамм масса пяти бандеролей, меньше массы трёх посылок и двух бандеролей.
14500-10500=4000 (г) масса пяти бандеролей.
4000÷5=800 (г) масса бандероли.
ответ: 800 грамм.
1. Вектор ВА=((-6)-18;6-(-1))=(-24;7); ВС=(0-18;23-(-1))=(-18;24); AC=(0-(-6);23-6)=(6;17); Если начало координат переместить в начало вектора, то координаты конца и будут координатами вектора.
3. IBAI = корень((-24)^2+7^2)=25;IBCI = корень((-18)^2+24^2)=30;IACI = корень(6^2+17^2)=5*корень(13);
(почти точно 18:), ну в самом деле, 18^2=324, АС^2 =325... к сожалению, треугольник не прямоугольный. Прямоугольным был бы треугольник со сторонами 18,24,30)
2.очевидное замечание АВ = -ВА, скобками обозначено скалярное произведение АВ и АС;
cosA=(AB,AC)/(IABI*IACI)==(24*6+(-7)*17)/(25*5*корень(13))=1/(5*корень(13));
между прочим sinA = 18/(5*корень(13));
cosB=(ВА,BC)/(IBAI*IBCI)=((-24)*(-18)+7*24)/(25*30)=4/5; sinB=3/5
cosC=(CА,CB)/(ICAI*IBCI)=((-6)*18+(-17)*(-24))/(30*5*корень(13))=2/корень(13);
sinC=3/корень(13);
4. Середины сторон проще всего находить, как полусумму координат вершин
D=((18+(-6))/2;(-1+6)/2)=(6;2,5);L=(9;11);T=(-3;14,5);
5. Если от точки С=(0;23) отложить 2 раза вектор (1/3)*СВ=(18/3;-24/3)=(6;-8)
то получим 2 нужные точки N=(0+6;23-8)=(6;15);K=(6+6;15-8)=(12;7);
6.Вектор АL - медиана, AL=(9-(-6);11-6)=(15;5); От точки А откладываем 2/3*AL, получаем координаты точки пересечения медиан
M=(-6+(2/3)*15;6+(2/3)*5)=(4;9+1/3)