ответ:Тогда площадь равна S= \frac{1}{2}a*H= \frac{1}{2} a*b*sinC= \frac{1}{2}*20*14* \frac{3}{5}=84 кв.ед.
Пошаговое объяснение:
Находим длину третьей стороны по теореме косинусов:
Затем по формуле Герона находим площадь треугольника:
.
Подставив значения сторон и найденное значение полупериметра
р = 23.082763. находим площадь треугольника:
a b c p 2p S
20 14 12.165525 23.082763 46.16552506 84
cos A = -0.164399 cos B = 0.7233555 cos С = 0.8
Аrad = 1.735945 Brad = 0.7621465 Сrad = 0.643501109
Аgr = 99.462322 Bgr = 43.66778 Сgr = 36.86989765.
Можно решить задание более простым
Находим значение синуса заданного угла:
Находим значение синуса заданного угла:
sinC= \sqrt{1-cos^2C} = \sqrt{1- \frac{16}{25} } = \sqrt{ \frac{9}{25} } = \frac{3}{5} .
Подробнее - на -
1) Найдем координаты векторов АВ и CD.
Чтобы найти координаты вектора, нужно найти разность соответствующих координат точки конца вектора и начала.
Найдем координаты вектора АВ:
АВ (хв – ха; ув – уа; zв – zа);
АВ (-3 – 1; 3 – (-5); -4 – 0);
АВ (-4; 8; -4).
Найдем координаты вектора СD:
CD (хD – хC; уD – уC; zD – zC);
CD (-5 – (-1); 6 – 4; 2 – 0);
CD (-4; 2; 2).
2) Скалярное произведение векторов:
АВ * CD = -4 * (-4) + 8 * 2 + (-4) * 2 = 16 + 16 – 8 = 24
3) Найдем длины векторов АВ и CD.
Квадрат длины вектора равен сумме квадратов его координат.
Найдем длину вектора АВ:
|АВ|2 = (-4)2 + 82 + (-4)2 = 16 + 64 + 16 = 96;
|АВ| = √96.
Найдем длину вектора СD:
|CD|2 = (-4)2 + 22 + 22 = 16 + 4 + 4 = 24;
|CD| = √24.
4) Найдем угол между векторами:
cos a = АВ * CD / (|АВ| *|CD|) = 24 / (√96 * √24) = 24 / 48 = ½
а = 600.
ответ: 600 градусов