Графически неравенство x^2+6x-18< 0 представляет собой ту часть параболы у = x^2+6x-18, которая расположена ниже оси ординат(это ось ох).поэтому находим точки пересечения этой параболы с осью ох - в этих точках значение у = 0: х² + 6х - 18 = 0 квадратное уравнение, решаем относительно x: ищем дискриминант: d=6^2-4*1*(-18)=36-4*(-18)=*18)=)=36+72=108; дискриминант больше 0, уравнение имеет 2 корня: x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615; x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615.отсюда ответ:
15
Пошаговое объяснение:
y=7tgx-7x+15
y'=7·(tgx)'-7·x'+15'
y'=7·1/cos²x -7
y'=7·(1/cos²x -1)=7·(1-cos²x)/cos²x=7·sin²x/cos²x=7·tg²x
y'=7·tg²x
7·tg²x=0
tg²x=0
tgx=0
x=π·n, n∈z
Только при n=0, x=0∈[-пи/4);0]
y(-π/4)=7·tg(-π/4)-7·(-π/4)+15=-7+7π/4+15=8+7·π/4
y(0)=7·tg0-7·0+15=-0-0+15=15
Сравним 8+7·π/4
3<π<3,2⇒ 3/4<π/4<3,2/4⇒ 7·3/4<7·π/4<7·3,2/4⇒5,25<7·π/4<5,6⇒
8+5,25<8+7·π/4<8+5,6⇒13,25<8+7·π/4<13,6⇒8+7·π/4<15⇒15- наибольшее значение функции y=7·tgx-7·x+15 на отрезке [-пи/4;0]
ответ:15