11%
Пошаговое объяснение:
1) Найдём площадь боковой поверхности бревна:
, где R - радиус бревна, l - его длина
(Все единицы приведем к сантиметрам)
2) Найдем длину и ширину прямоугольного сечения бревна.
Диагональ такого сечения равна диаметру D исходного бревна, а так как нам известно соотношение сторон прямоугольника, то, обозначив их за 3х и 4х, получаем выражение (по т. Пифагора):
D=2R=5x ⇒ 5x=15 ⇒ x=3
Значит длина прямоугольного сечения: a = 4х = 12 см;
а ширина прямоугольного сечения: b = 3х = 9 см.
Тогда площадь поверхности такого бревна будет:
S₂ = 2*(12+9)*100 = 4200 см²
Т.к. S₁ = 100%, а S₂ = ?%, то составим пропорцию:
, где р₂ - процентное значение площади прямоугольного параллелепипеда относительно площади цилиндрического бревна.
Значит неиспользованными останутся:
ответ: 600 л и 420 л.
Пошаговое объяснение:
Пусть х л было в первой бочке, тогда (1020-х) л - было во второй бочке;
(1-2/5)х л=3/5 х л - стало в первой бочке,
(1-1/7)*(1020-х) л= 6/7*(1020-х) л - стало во второй бочке.
По условию задачи в бочках стало поровну.
Составим и решим уравнение:
3/5 х = 6/7* (1020-х);
3/5 х = 6/7*1020 - 6/7 х;
3/5 х + 6/7 х = 6120/7;
Умножим обе части уравнения на 35, одновременно сокращая этот множитель со знаменателями:
21 х +30 х= 30600;
51 х=30600;
х=30600:51;
х=600.
1020-х=1020-600=420.