Функция возрастает на всей
области определения.
Пошаговое объяснение:
у=х^3+3х^2+3х+1
Находим производную функ
ции:
у'=(х^3)'+(3х^2)+(3х)'+(1)'=
=3х^2+6х+3.
Приравниваем производную 0:
у'=0
3х^2+6х+3=0 | :3
х^2+2х+1=0
(х+1)^2=0
х=-1
Исследуем знак производной
в окрестности точки х=-1
у'(-2)=3×(-2)^2+6×(-2)+3=
=3×4-12+3=12-12+3=3>0 ("+")
у'(0)=3×0+6×0+3=0+0+3=3 ("+")
Сузим окрестность:
у'(-1,1)=3×(-1,1)^2+6×(1,1)+3=
=3,63+6,6+3=13,23 ("+")
у'(-0,9)=3×(-0,9)^2+6×(-0,9)+3=
=2,43-5,4+3=5,43-5,4=0,03 ("+")
Производная положительна и не изменяет знак в окрестности точ
ки х=(-1), следовательно, эта точ
ка является точкой перегиба, а
функция возрастает на всей об
ласти определения.
ответ: Промежутков убывания
нет. Функция возрастает
х€(-беск.; +беск.)
Так как прямая у = х + 3 проходит выше нижней части параболы у = х² + 1, то для нахождения площади надо проинтегрировать разность:
(х + 3) - (х² + 1) = -х² + х + 2.
Находим пределы интегрирования, приравняв функции:
х² +1 = х + 3
х² - х - 2 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-(-1))/(2*1)=(3-(-1))/2=(3+1)/2=4/2=2;
x_2=(-√9-(-1))/(2*1)=(-3-(-1))/2=(-3+1)/2=-2/2=-1.
Решаем интеграл:
27 / 6 = 9 / 2 = 4.5.
ответ: S = 4,5.
По моему так
30
Пошаговое объяснение:
6*5=30 (дорожек)
ответ