Прямоугольник — это четырёхугольник, у которого четыре прямых угла. Размеры прямоугольника задаются длиной его сторон, обозначаемых обычно a и b. Прямоугольник, все стороны которого равны (a=b) называется квадратом.
Свойства прямоугольника
противолежащие стороны равны и параллельны друг другу;
диагонали равны и в точке пересечения делятся пополам;
сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон;
прямогугольниками одного размера можно полностью замостить плоскость;
прямоугольник можно двумя разделить на два равных между собой прямоугольника;
прямоугольник можно разделить на два равных между собой прямогульных треугольника;
вокруг прямоугольника можно описать окружность, диаметр которой равен диагонали прямоугольника;
в прямогульник (кроме квадрата) нельзя вписать окружность так, чтобы она касалась всех его сторон.
Параллельность сторон, одинаковость углов и возможность замощения плоскости делают прямоугольник самой удобной геометрической фигурой при разбиении площади на участки будь то на местности, в помещении или внутри технического устройства. Участок можно считать прямоугольным, если его отклонения от идеального прямоугольника не превышают допустимой в расчетах погрешности. Тогда для периметр и площадь участка можно определять по формулам расчета периметра и площади прямоугольника.
Периметр P прямоугольника равен удвоенной сумме сторон, прилежащих к одному углу
P = 2(a + b).
Длина диагонали d прямоугольника вычисляется по теореме Пифагора:
d = √(a2 + b2).
Углы между диагоналями прямоугльника определяются соотношением сторон:
α = 2arctg(a/b),
β = 2arctg(b/a),
α + β = 180°.
Площадь S прямоугольника равна произведению сторон, прилежащих к одному углу (произведению длины на ширину):
S = a·b.
Также можно выразить площадь прямоугольника через длину диагоналей и угол между ними:
S = d2·sin(α/2)·cos(α/2).
Радиус описанной вокруг прямоугольника окружности равен половине длины диагонали:
R = √(a2 + b2)/2.
В прямоугольник (если он не квадрат) нельзя вписать окружность так, чтобы она касалась всех его сторон. Максимальный радиус окружности, которая может поместиться внутри прямоугольника, равен половине его меньшей стороны.
Задача 1:
В магазине «Все для чая» есть 5 разных чашек и 3 разных блюдца. Сколькими можно купить чашку с блюдцем?
Выберем чашку. В комплект к ней можно выбрать любое из трех блюдец. Поэтому есть 3 разных комплекта, содержащих выбранную чашку. Поскольку чашек всего 5, то число различных комплектов равно 15 (15 = 5 • 3).
Задача 2:
В магазине «Все для чая» есть еще 4 чайные ложки. Сколькими можно купить комплект из чашки, блюдца и ложки?
Выберем любой из 15 комплектов предыдущей задачи. Его можно дополнить ложкой четырьмя различными Поэтому общее число возможных комплектов равно 60 (60 = 15 • 4 = 5 • 3 • 4).
Задача 3:
В Стране Чудес есть три города: А, Б и В. Из города А в город Б ведет 6 дорог, а из города Б в город В – 4 дороги. Сколькими можно проехать от А до В?
ответ: 24 = 6 • 4.
Пошаговое объяснение:
думаю,что поняла задание правильно.