1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Если мальчики - это одна часть всех учеников в классе. то девочки - это три части всех учеников. всего в классе (мальчики + девочки) - четыре части. значит, в классе количество учеников должно быть кратным четырем. 34 не делится нацело на 4. значит в классе не может быть 34 ученика. 36 делится на 4, значит 36 учеников может быть в классе. другие числа, кратные четырем: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 и т.д. - столько учеников может быть в классе. значит, ответов - бесконечное множество. но, если ограничить количество учеников, которое может быть в классе, например, в классе больше 15, но меньше 41 человека, то будет 7 вариантов - 16, 20, 24, 28, 32, 36, 40
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Оказываемся в точке (-14) (см. рис. 4)
ответ: -14