М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ionufrijchuk
ionufrijchuk
31.05.2021 19:21 •  Математика

Мистер фокс перебирал в уме подряд все натуральные числа от
1 до 10^12
. в случае, если текущее число оказывалось квадратом некоторого натурального числа, кубом некоторого натурального числа или четвёртой степенью некоторого натурального числа, он записывал это текущее число в записную книжку. сколько чисел выписал мистер фокс?

👇
Ответ:
cvetok31maia
cvetok31maia
31.05.2021

Определим количество чисел, которые являются квадратом некоторого натурального числа. Натуральные числа начинаются с 1 и поэтому рассмотрим квадраты чисел 1², 2², ..., K²≤10¹². Тогда K = 10⁶, то есть 1000000 чисел, которые являются квадратом некоторого натурального числа.

Теперь определим количество чисел, которые являются кубом некоторого натурального числа. Рассмотрим кубы чисел 1³, 2³, ..., K³≤10¹². Тогда K = 10⁴, то есть 10000 чисел, которые являются квадратом некоторого натурального числа. Но среди них есть числа, которые учтены среди чисел, которые являются квадратом некоторого натурального числа. Например, 64=8²=4³. Определим их количество. Пусть некоторое число одновременно является квадратом некоторого натурального числа и кубом другого натурального числа, то есть a=n²=m³. Тогда для некоторого натурального числа с: a=с⁶. Поэтому рассмотрим 6-степени чисел 1⁶, 2⁶, ..., K⁶≤10¹². Тогда K = 10², то есть всего 100 чисел, которые одновременно является квадратом некоторого натурального числа и кубом другого натурального числа. Значит, 10000-100=9900  чисел можем учесть при подсчёте.

Далее, числа, которые являются четвёртой степенью некоторого натурального числа учтены при подсчёте чисел, которые являются квадратом некоторого натурального числа. Это следует из того, что если число a является четвёртой степенью некоторого натурального числа n, то a=n⁴=(n²)².

Наконец, можем определить количество чисел, которых мистер Фокс записывал в записную книжку:

1000000 + 9900 = 1009900.

4,8(87 оценок)
Открыть все ответы
Ответ:
Ksyusha891
Ksyusha891
31.05.2021
Ууу, очень интересный вопрос. Для того, чтобы ответить на данный вопрос, нужно вспомнить о формах электронных орбиталей и размещение электронов по энергетическим уровням и подуровням.
С находится во втором периоде, то есть уровней у него 2, следовательно он имеет подуровни s и p. Так выглядит его электронная формула:
С 1s^2 2s^2 2p^2.
Поскольку на последнем подуровне есть незаполненная ячейка (у р-подуровня их 3), а на этом же уровне есть заполненная ячейка s-подуровня, то С может взять и перекинуть один электрон с s-подуровня на свободную ячейку р-подуровня, таким образом у него остаётся неспаренных целых 4 электрона, отсюда и валентность и связей могут достигать 4. 
На пальцах это сложно объяснить, но это всё, что я могу
4,4(26 оценок)
Ответ:
Наночкка
Наночкка
31.05.2021

Предположим, что х метров - первая часть верёвки, тогда 7х - вторая часть верёвки, также из условия задачи известно, что первоначальная длина верёвки 256 метров

согласно этим данным составим и решим уравнение:

х+7х=256

8х=256

х=256:8

х=32 (м) - длина I части верёвки.

7х=7·32=224 (м) - длина II части верёвки.

224-32=192 (м) - разница (на столько вторая часть длиннее первой части).

1) 1+7=8 (частей) - получилось равных частей верёвки.

2) 256:8=32 (м) - длина I части верёвки.

3) 32·7=224 (м) - длина II части верёвки.

4) 224-32=192 (м) - разница.

ответ: на 192 метра вторая часть верёвки длиннее первой части.

Проверка:

32+224=256 (м) - первоначальная длина верёвки.

4,4(45 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ