ОДЗ x>0 (log²(2)x-2log(2)x)²+36log(2)x+45-18log²(2)x<0 (log²(2)x-2log(2)x)²-18(log²(2)x-2log(2)x)+45<0 log²(2)x-2log(2)x=a a²-18a+45<0 a1+a2=18 U a1*a2=45⇒a1=3 U a2=15 3<log²(2)x-2log(2)x<15 log(2)x=b 3<b²-2b<15 {b²-2b>3⇒b²-2b-3>0 {b²-2b<15⇒b²-2b-15<0 b1+b2=2 U b1*b2=-3⇒b1=-1 U b2=3 b<-1 U b>3 b3+b4=2 U b3*b4=-15⇒b3=-3 U b4=5 -3<b<5 -3<b<-1 U 3<b<5 -3<b<-1⇒-3<log(2)x<-1⇒1/8<x<1/2 3<b<5⇒3<log(2)x<5⇒8<x<32 ответ x∈(1/8;1/2) U (8;32)
Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
Решение на листе
Пошаговое объяснение: